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ABSTRACT-The surface stress and fluxes of heat and 
moisture are parameterized for use in numerical models of 
the general circulation of the atmosphere. The parameteri- 
zation is designed to be consistent with recent advances in 
knowledge of both the planetary boundary layer and the 
surface layer. A key quantity throughout is the height, h, 
of the planetary boundary layer, which appears in the 
governing stability parameter, a bulk Richardson number. 
With upward heat flux, a time-dependent prediction 
equation is proposed for h that incorporates penetrative 
convection and vertical motion. Under stable conditions, 
h is assumed to depart from the neutral value and to be- 

l. INTRODUCTION 

The planetary boundary layer (PBL) is the region adja- 
cent to the earth's surface where small-scale turbulence is 
induced by wind shear and/or thermal convection and 
occurs almost continuously in space and time. It includes 
in its lowermost portion the Prandtl or surface layer, 
where the vertical fluxes of heat, momentum, and moisture 
have nearly the same magnitudes as they do at the surface 
itself. By contrast with the PBL, turbulence on the sub- 
synoptic scale occurs only intermittently in the rest of the 
troposphere. Above the PBL, the mechanisms which cause 
turbulent transport are towering cumulus clouds, clear-air 
turbulence associated with internal wind shear layers, and 
effects of topography on a scale large enough to cause 
upward propagation of energy through the PBL. 

A general circulation model (GCM) of the earth's at- 
mosphere should treat the PBL in a physically realistic 
way to relate the turbulent fluxes a t  the surface to the 
calculated variables from the GCM. Two approaches seem 
possible. One is to place several layers (perhaps five or 
six) within the lowest 2-3 km above the surface to resolve 
the vertical structure of the PBL crudely but explicitly. 
Even in this case, however, the associated vertical trans- 
ports of heat, momentum, and moisture should be param- 
eterized in a manner consistent with the existence of a 
PBL within the layers. 

The second approach is to parameterize all aspects of 
the PBL in a GCM that has such poor vertical resolution 

* The research reported in this paper was done mainly at the University of California. 
Los Angeles, and supported in part by National Science Foundation Qrant No. QA- 
22/66. 

2 Sponsored by the Nationa Ikience Foundation 

come nearly proportional to the Monin-Obukhov length. 
The roughness length, %, is incorporated in the com- 

bination h/zo, and the parameterization is consistent with 
h/zo sffecting only the wind component in the direction of 
the surface velocity. The direction of the surface wind and 
stress is derived in a manner consistent with the known 
value of the surface pressure gradient and theoretical 
studies of the decrease of stress with height. 

The parameterization has been tested numerically and 
appears to be efficient enough to use in existing general 
circulation models. 

that the top of the PBL may sometimes not even reach 
the level of the lowest interior gridpoints. The first ap- 
proach may be preferable but is usually not feasible, 
especially with the ever present desire to increase the 
horizontal resolution of any model. The second approach 
has not been seriously attempted mainly because of lack 
of knowledge about properties of the PBL. However, this 
knowledge is beginning to accumulate, as may be seen 
from recent studies by Csanady (1967), Blackadar and 
Tennekes (1968), Gill (1968), Deardorf€ (1970a, 1970b), 
Clarke (1970a, 1970b), Tennekes (1970), Lenschow (1970), 
Lettau and Dabberdt (1970), and others. It therefore 
seems appropriate to attempt a parameterization of the 
properties of the PBL a t  this time, using the second 
approach. The symbols used are identified in table 1. 

The basic procedure to be followed here involves 
splitting the problem into four parts: 

1. Use the existing height, h, of the top of the PBL above sea 
level and values a t  the lowest one or two grid levels of the GCM to  
obtain estimates of the vertically averaged mean values of wind 
velocity, potential temperature, and specific humidity within the 
PBL. 

2. Estimate the surface fluxes of momentum, heat, and moisture 
using a bulk Richardson number based upon differences between 
mean values obtained above in step 1 and the surface values. This 
estimate makes use of our knowledge of both the surface layer and 
the entire PBL. 

3. Estimate the direction of the surface-level velocity using the 
known value of the horizontal pressure gradient at the surface. This 
step makes use of PBL theory and the results of step 2 and is 
necessary so that  the direction of the surface stress can be known. 
The mean wind speed occuring in the bulk Richardson number can 
then be refined to  become the component in the direction of the 
surface wind and steps 2 and 3 oan be repeated if necessary. 
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FIGURE 1.-Schematic representation of the surface, i,, the height, x, of the planetary boundary layer, and GCM grid levels, 21,. . . , 
2,. The zs denote grid points at which U ,  V ,  0, and q are calculated; 
the os denote points where W is calculated. 

for its simplicity is to extrapolate from levels 1 and 3 
within the GCM to the mid-PBL level of %(K+g,); that is, 

and similarly for V,, Om, and q,. Thus, if %(K+i,) should 
equal z, or zz, Urn is given by Ul or X( U, + U,) , respectively, 
without need of extrapolation or interpolation. [Revision 
of eq (1) is necessary if the grid levels do not follow the 
topography as in fig. 1.1 If E exceeds z4, eq (1) may still 
be applied, with %(Z+z,) replaced by z2, because the 
PBL is then apt to be well mixed. 

The above method is least satisfactory when the PBL 
is shallow and capped by a very strong temperature 
inversion. To treat such circumstances with some rigor, 
one might instead utilize time-dependent equations for 
8, and qm (and possibly Urn and V,) in addition to the 
prognostic equations already in use within the GCM at  
interior grid levels. This would add the term [(e,-  
e,)&/dt]/(~-&) to the right-hand side of a prognostic 
equation for e,, for example. Although the added terms 
involving dLfdt are available, 5, and a,, would be relatively 
uncertain quantities for which evaluation might in turn 
require new prognostic equations. Because of this and other 
complicatione, the second method is beyond the scope of 
this paper but has been discussed by Lilly (1968). 

3. ESTIMATE OF SURFACE FLUXES WITH 
UNKNOWN SURFACE FLOW DIRECTION 

Surface-layer formulations relate the surface fluxes of 
sensible heat and moisture to the vertical gradients of 
e and a, respectively, at  anemometer level, z,, and to  the 
friction velocity, u* = ( ~ ~ / p ~ ) l ’ * .  Here, rS is the surface stress, 
which is assumed directed in the downstream, x, direction 
near the surface, p is density, and the subscript s refers to 
evaluation at the surface. The surface layer is defined to be 
sufficiently shallow that the vertical flux of a quantity at 
z, is little different than at  z,. 

To extend surface-layer formulations far into the PBL, 
me must make use of PBL studies in which, again, the 

- 

velocity along the surface flow direction is an important 
factor. We will then need to make use of u,, where u is 
the velocity component in the x-direction, whereas only 
the mean velocity V,(X,  Y, t )  is immediately available 
from the GCM using eq (1). The directions of V, and u, 
generally differ by loo or more, depending upon effects of 
thermal stability, height of the PBL, baroclinicity, and 
vertical resolution of the GCM. At this early stage in the 
solution for the surface fluxes, it will be assumed that u, 
approximately equals IV,I. The surface stress obtained 
with the aid of this assumption can be utilized to estimate 
the difference between the flow direction of the mean PBL 
and that existing a t  height E,. If the difference is enough 
to cause u: to be significantly smaller than V:, the revised 
value for u, may be utilized in a manner described later 
to obtain improved estimates of the surface fluxes. Sub- 
sequently, a revised surface flow direction may be obtained. 

Treatment of the Surface Layer 

In  this 1 ayer, the dimensionless vertical gradients of 
wind, temperature, and specific humidity are believed to 
be functions of (z-,&)/L only, where L is the Monin- 
Obukhov length given by 

L=-u: k - ( d e ; ) ,  . C l m - I  
Here, k is KBrmBn’s constant, g is the gravitational accel- 
eration, and e, is the virtual potential temperature. The 
kinematic vertical flux of virtual potential temperature, 
d e ; ,  is used here since this quantity appears in the tur- 
bulence kinetic energy equation as a source or sink if the 
density perturbations associated with moisture fluctua- 
tions are taken into account in a Boussinesq approxima- 
tion. The kinematic vertical flux is related to the sensible 
heat and moisture fluxes by 

- 

(3) 

The primes refer to local deviations from the GCM grid- 
area average. The thermal stability of the PBL will be 
designated as 

unstable if (=),>O with (O,,-O,,)>O 

neutral if ( W T ) ~ = O  with (O,,-O,,)=O } (4) 

stable if ( W T ) ~ < O  with (e,,-e,,)<O. 

It will become apparent later that the methods used to 
obtain the surface fluxes ensure that (a,), has the same 
sign as &,,-evm. 

It is assumed that the surface values 5, and as are known, 
either from climatological evaluation for use over the sea 
or from calculations based upon the surface thermal energy 
balance. The quantity e,, is given approximately by 

and similarly for subscript m replacing s. 
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Fluxes in stratocumulus clouds





Fluxes in cumulus cloud systems



A way to talk about fluxes

A bar means a grid-area average, also called a 
“first moment.” It is a statistic.	



A prime means a departure from a grid-area 
average. The average of a prime is zero.	



A “prime prime bar,” which can be called a 
“second moment,” is a statistic that arises from 
correlated variations on unresolved scales.	



Some second moments are fluxes of first 
moments.	



A third moment has the form “prime prime 
prime bar.” Some third moments are fluxes of 
second moments.	



A model that predicts anything higher than 
first moments is called a “higher-order closure” 
model.

HOC

q

′q

′w ′q

′w ′w ′q



HOC started in the 1960s

• Obscure technical reports	



• Engineering applications	



• Immediate interest from 
atmospheric scientists

I first learned about HOC while studying aero engineering at Ohio State.



HOC
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Closures Needed

1) Closures for the effects of higher 
moments that are not predicted, e.g., as 
mentioned above, the fourth moments in a 
third-order closure model.	



2) Closures for moments involving the 
pressure, which occur in the equations for 
moments that involve velocity components. 	



3) Closures for dissipation rates, which are 
especially important in the equations 
governing variances.	



4) Closures to determine SGS phase 
changes (e.g., Sommeria and Deardorff, 
1977; Mellor, 1977) and other 
microphysical processes (e.g., Larson et al., 
2005), as well as radiative heating and 
cooling.



• Flux parameterizations in models	



• Interpretation of observations and 
high-resolution simulations

What is HOC good for?

Both Chin-Hoh Moeng and Steve Krueger used HOC in their PhD work.



Issues

• Closures	



• “Too statistical” -- no room for 
phenomenology	



• Too complicated



Meanwhile...

Sommeria & Deardorff (1977) and Mellor (1977)



Their idea

Sommeria and Deardorff used an assumed joint distribution 
of temperature and moisture.

Variance of T

Variance of q

Covariance of 
T and q

parameters 
of joint 

Gaussian 
distribution

Fractional 
cloudiness

Mean of T

Mean of q

They needed 2 first moments and 3 second moments 
to determine the parameters of the joint distribution.



Back and forth

MomentsParameters 
of the PDF

always

sometimes



Randall JAS 1987	



Randall, Shao, and Moeng, JAS 1992	



Lappen and Randall, JAS 2001

Let’s include w in the joint distribution.

Selected first, 
second, and 

third moments 
of T, q, and w

Parameters 
of the

trivariate
joint PDF

Closure for 
higher 

moments

HOC 
equations

Closure for 
subgrid cloud 

fraction



Closures Found

1) Closures for the effects of higher 
moments that are not predicted, e.g., as 
mentioned above, the fourth moments in a 
third-order closure model. ✔	



2) Closures for moments involving the 
pressure, which occur in the equations for 
moments that involve velocity components. 	



3) Closures for dissipation rates, which are 
especially important in the equations 
governing variances.	



4) Closures to determine SGS phase 
changes (e.g., Sommeria and Deardorff, 
1977; Mellor, 1977) and other 
microphysical processes (e.g., Larson et al., 
2005), as well as radiative heating and 
cooling. ✔



Phenomenology

One Gaussian represents the clouds, and the other represents the environment.



Which assumed PDF?

Gaussian?  
No third moments.	



Two delta functions?  
Not realistic enough.	



Two Gaussians?  
Good compromise, 
suggested by Lewellen and 
Yoh (1993) and adopted 
by Golaz et al., 2002.



1

2

1+2

Weight 1-a

Weight a

We use trivariate double Gaussians, for w, T, and q.



Parameters of the trivariate PDF

How are we going to deal with this?

a , -1

w1 , w2 , T1 , T2 , q1 , q2 , -6

′w( )1
2 , ′w( )2

2 , ′T( )1
2 , ′T( )2

2 , ′q( )1
2 , ′q( )2

2 , -6

′w ′T( )
1
, ′w ′T( )

2
, ′w ′q( )

1
, ′w ′q( )

2
, ′q ′T( )

1
, ′q ′T( )

2
,-6

Total: 19

(46)

Coincidentally, a general trivariate joint PDF has exactly  nineteen first, second, and third 
moments, namely

w , T , q -3

′w ′w , ′T ′T , ′q ′q -3

′w ′T , ′w ′q , ′T ′q -3

′w ′w ′w , ′T ′T ′T , ′q ′q ′q -3

′w ′T ′q -1

′w ′w ′T , ′w ′w ′q , ′T ′T ′w , ′T ′T ′q , ′q ′q ′w , ′q ′q ′T -6

Total: 19

(47)

Suppose that we have an LES from which we can diagnose the nineteen moments listed in 
(29). We want to use these nineteen numbers to compute the nineteen parameters of the double-
Gaussian distribution. 

We begin by using the methods explained above to determine a , δw , δT , and δq , 

assuming that the SPS second moments are all zero. In the process, we “use up” the equations for 
′w ′w ′w , ′T ′T ′T , ′q ′q ′q , and ′w ′T ′q . We then solve the system of twelve equations for ′w ′w , 

′T ′T , ′q ′q , ′w ′T , ′w ′q , ′T ′q , ′w ′w ′T , ′w ′w ′q , ′T ′T ′w , ′T ′T ′q , ′q ′q ′w , and ′q ′q ′T  for the 

twelve unknowns ′w ′w( )
1

, ′w ′w( )
2

, ′T ′T( )
1

, ′T ′T( )
2

, ′q ′q( )
1

, ′q ′q( )
2

, ′w ′T( )
1

, ′w ′T( )
2
, 
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Which moments are important?

Needed in HOC equations, directly, or	



Needed to determine the parameters of the PDF

′w ′w ′w ′θl ′θl ′θl′q ′q ′q

The third moments measure the “distance” between the Gaussians.

Fluxes are needed in the first moment equations.

′w ′q′w ′θ



The third moments measure the “distance” between the Gaussians.

1

2

1+2

Weight 1-a

Weight a



Third moments rule.

′w( )2 = 1− a( ) ′w( )1
2 + a ′w( )2

2⎡
⎣⎢

⎤
⎦⎥ + a 1− a( ) δw( )2 ,

(56)

and

′w( )3 = a 1− a( )δw 3 ′w( )2
2 − ′w( )1

2⎡
⎣⎢

⎤
⎦⎥ + δw( )2 1− 2a( ){ }

= δw 3a 1− a( ) ′w( )2
2 − ′w( )1

2⎡
⎣⎢

⎤
⎦⎥ + a 1− a( ) 1− 2a( ) δw( )2{ }

(57)

respectively. Combining (56) and (57), we obtain

δw =
′w( )3

3a 1− a( ) ′w( )2
2 − ′w( )1

2⎡
⎣⎢

⎤
⎦⎥ + 1− 2a( ) ′w( )2 − 1− a( ) ′w( )1

2 + a ′w( )2
2⎡

⎣⎢
⎤
⎦⎥{ } .

(58)

Similarly, 

δT =
′T( )3

3a 1− a( ) ′T( )2
2 − ′T( )1

2⎡
⎣⎢

⎤
⎦⎥ + 1− 2a( ) ′T( )2 − 1− a( ) ′T( )1

2 + a ′T( )2
2⎡

⎣⎢
⎤
⎦⎥{ } ,

(59)

δq = ′q( )3

3a 1− a( ) ′q( )2
2 − ′q( )1

2⎡
⎣⎢

⎤
⎦⎥ + 1− 2a( ) ′q( )2 − 1− a( ) ′q( )1

2 + a ′q( )2
2⎡

⎣⎢
⎤
⎦⎥{ } .

(60)

In effect, we have used ′w ′T ′q  to determine a , and ′w ′w ′w , ′T ′T ′T ,  and ′q ′q ′q  to determine 

δw , δT , and δq , respectively. This is consistent with our earlier conclusion that the third 

moments determine the separations between the means of the two Gaussians. Only four third 
moments are needed, in addition to the first moments. No second moments are needed. 

′w ′w ′w , ′T ′T ′T , ′q ′q ′q , ′w ′T ′q

In a “Russian dolls” approach to parameterization of the twelve SPS second moments, we 
can use second-order closure within each plume. Because the plumes are Gaussian, the SPS third 
moments are zero. It is important  to include vertical advection of the second moments by the 
plume-scale vertical velocity. 
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It turns out that the six plume-scale means and the weight, a, can be 
determined using just four third-moments, in addition to the three first-
moments. It is not necessary to predict any second-moments.

The sub-plume-scale second moments can and should be parameterized in 
terms of the plume-scale first moments.  The full second moments can then 
be computed.

I will provide more details on Thursday morning.



a , -1

w1 , w2 , T1 , T2 , q1 , q2 , -6

′w( )1
2 , ′w( )2

2 , ′T( )1
2 , ′T( )2

2 , ′q( )1
2 , ′q( )2

2 , -6

′w ′T( )
1
, ′w ′T( )

2
, ′w ′q( )

1
, ′w ′q( )

2
, ′q ′T( )

1
, ′q ′T( )

2
,-6

Total: 19

(46)

Coincidentally, a general trivariate joint PDF has exactly  nineteen first, second, and third 
moments, namely

w , T , q -3

′w ′w , ′T ′T , ′q ′q -3

′w ′T , ′w ′q , ′T ′q -3

′w ′w ′w , ′T ′T ′T , ′q ′q ′q -3

′w ′T ′q -1

′w ′w ′T , ′w ′w ′q , ′T ′T ′w , ′T ′T ′q , ′q ′q ′w , ′q ′q ′T -6

Total: 19

(47)

Suppose that we have an LES from which we can diagnose the nineteen moments listed in 
(29). We want to use these nineteen numbers to compute the nineteen parameters of the double-
Gaussian distribution. 

We begin by using the methods explained above to determine a , δw , δT , and δq , 

assuming that the SPS second moments are all zero. In the process, we “use up” the equations for 
′w ′w ′w , ′T ′T ′T , ′q ′q ′q , and ′w ′T ′q . We then solve the system of twelve equations for ′w ′w , 

′T ′T , ′q ′q , ′w ′T , ′w ′q , ′T ′q , ′w ′w ′T , ′w ′w ′q , ′T ′T ′w , ′T ′T ′q , ′q ′q ′w , and ′q ′q ′T  for the 

twelve unknowns ′w ′w( )
1

, ′w ′w( )
2

, ′T ′T( )
1

, ′T ′T( )
2

, ′q ′q( )
1

, ′q ′q( )
2

, ′w ′T( )
1

, ′w ′T( )
2
, 
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Parameters of the trivariate PDF

Parameterize	


(phenomenology)

Determine by predicting 
three first moments and 
four third moments



Issues

• Momentum fluxes?	



• Deep convection?	



• Gravity waves?



Momentum

T, q, and w are not enough.	



What about the momentum fluxes?

Pesky pressure terms are prominent in 
the second-moment equations for the 
momentum fluxes.



For the momentum flux,  
eddy size, shape, and orientation matter

Figure from http://www.po.gso.uri.edu/Numerical/tropcyc/rolls.html



Maybe vorticity can help us with momentum.

Weather is dominated by vorticity dynamics.



Enstrophy

• The ratio of kinetic energy to enstrophy defines a length scale. 
Eddy size and shape?	



• The reciprocal of the square root of the enstrophy is a time 
scale that may be useful in a dissipation closure.	



• The contribution to the enstrophy from the vertical component 
of the vorticity may be useful for severe weather forecasting.



Enstrophy in Giga-LES

Plots from Don Dazlich

Almost all of the enstrophy is in the horizontal vorticity.

45 s



Is HOC a “theory of everything?”

Turbulence Deep convection Gravity waves

To represent all of these things, a very general closure would be needed.



From the STC pre-proposal, 2003

“To maximize the utility of the MMF, we must develop improved 
versions of its parameterizations of micro- physics, turbulence, and 
radiation. … Initial work on turbulence will explore multiple 
alternative approaches including higher-order closure….”	





Four implementations

• Cheng and Xu (IPHOC)	



• Krueger & Bogenschutz (SHOC)	



• Larson and Zhang (CLUBB)	



• Firl & Randall (THOR)

All four use assumed double Gaussian joint distributions for temperature, 
moisture, and vertical velocity.	



The details differ considerably.



Conclusions

• Fluxes have kept me busy for a long time.	



• It is useful to combine HOC with assumed distributions.	



• HOC is now being used in the MMF, with the important (and expected) benefits.	



• We need a good way to bring momentum fluxes into this framework. Can 
moments involving vorticity help?	



• Deep convection? Gravity waves?


