Implementing a Higher-order Turbulence Closure (IPHOC) in CAM5 and SPCAM: Issues, Successes and Remaining Challenges

Kuan-Man Xu¹, Anning Cheng^{1,2}

NASA Langley Research Center, Hampton, VA
Science Systems and Applications, Inc., Hampton, VA

My spare time at UCLA ATM Computer Lab: playing "Tetrix" game

Outline

- 1. Introduction
- 2. Model description
- 3. Low-cloud climatology the good results
- 4. Precipitation and energy balance the relatively poor results
- 5. Remaining challenges
- 6. Conclusions

Objectives

 to improve the simulation of low-level clouds from the multiscale modeling framework (MMF) with a thirdorder turbulence closure in its CRM component

 to implement the same (but with more diagnosed moments) higher-order turbulence in CAM5 – the focus of this talk

Cheng and Xu (2011; *JGR*); Xu and Cheng (2013a,b; *J. Climate*) Cheng and Xu (2013a; *J. Climate*); Cheng and Xu (2013b; *JGR*) Cheng and Xu (2014a, JGR; accepted); Cheng and Xu (2014b, in prep.)

Uncertainties in cloud feedback remain in GCMs

Local contribution to intermodel spread in cloud feedback: AR4

· Most of intermodel spread arises from low stratocumulus/cumululs regions

Soden and Vecchi (2011

Local contribution to intermodel spread in cloud feedback: AR5

Low subtropical clouds still uncertain.

Large contribution from equatorial Pacific.

he A-Trai

Soden and Vecchi (2011):

 Low cloud cover is responsible for ~3/4 of the difference in global-mean net cloud feedback among AR4 models, with the largest contributions associated with low-level subtropical marine cloud systems;

The low-cloud inconsistency and deficiency in most of the models.

SE Pacific Stratocumulus

Subtropical stratocumulus

4 September 2009 at 20:45 UTC

from Wood (2012; Mon. Wea. Rev.)

Processes associated with stratocumulus

IPHOC: Intermediately-prognostic higher-order turbulence closure in SPCAM via SAM CRM

IPHOC implemented in CAM5, replacing all BL (turbulence, Cu & Sc) parameterizations

CAM5 (Community Atmosphere Model version 5)

CAM5 with IPHOC

Issues related to IPHOC implementation

Common issues for both SPCAM and CAM5

- ✦ Added computational cost: 100% for SPCAM and 50% for CAM5
- Issues specific to SPCAM
 - + Difficult to tune the model for energy balance
 - + 9 extra predictive equations and storage for other higher-order moments

Issues specific to CAM5

- Large time step: using sub-step (30 sec) for prognostic equations; diagnosis of most second and all third moments
- Vertical resolution: adding a diagnostic equation for PBL height to better represent the sharp gradient
- Coupling with other model parameterization components (e.g., icephase macrophysics, deep convection)

CAM5, CAM5-IPHOC, SPCAM-IPHOC climate simulations

• SPCAM-IPHOC

- CAM3.5 with finite-volume dynamic core as the host GCM
- 2-D version of System for Atmospheric Modeling (SAM) CRM with IPHOC
- The CRM grid spacing is 4 km, with 32 columns, within a GCM grid box
- The GCM grid spacing is 1.9°x2.5° with 32 vertical levels (12 below 700 hPa)
- CAM5 and CAM5-IPHOC GCMs
 - CAM5 with finite-volume dynamic core without/with IPHOC
 - Grid spacing is 1.9°x2.5°; 30 vertical levels (10 below 700 hPa)

All simulations:

- The simulations are forced with climatological SST and sea ice distributions (not an AMIP-type simulation)
- Simulation duration is 10 years and 3 months, with last nine years analyzed

Global distribution of annual mean low cloud fraction (top > 700 hPa)

Improvement from CAM5-IP in mean, RMS, correlation; Increases in coastal subsidence and SH storm track regions

Global distribution of annual mean low cloud fraction (top > 700 hPa)

For SH storm track low clouds, the decrease of vertical resolution increases the cloud fraction for SPCAM-IPHOC

Global distribution of annual mean surface precipitation

Reduced precipitation in eastern Pacific, but lack of SPCZ, ITCZ over the Indian Ocean in CAM5-IP; overestimates over lands SPCAM-IPHOC: lack of convection over land, microphysics?

Global distribution of annual mean surface precipitation

"Pledge the 5th:" IPHOC did not change the precipitation patterns of SPCAM, especially, over lands (2 yrs 3 mos. sensitivity runs)

Production of the second secon

Global distribution of annual mean LW CRF

Global distribution of annual mean SW CRF

Low cloud, LTS, PBL height and RH_s–Californian [see DeMott et al. (2010) for CAM3 and SPCAM]

Low cloud, LTS, PBL height and RH_s -- Peruvian

cloudiness in CAM5, opposite to other models and "observations"

Low cloud, LTS, PBL height and RH_s -- Namibian

LTS and cloudiness or between RHs and cloudiness; PBL height variation cannot explain the cloudiness variation (lower PBL in SPCAM)

Low cloud, LTS, PBL height and RH_s -- Australian

Low cloud, LTS, PBL height and RH_s -- Canarian

Why the GPCI transect? Transitions from tropical deep convection, tradewind cumulus to stratocumulus

Low cloud cover for June-July-August (JJA)

Sea surface temperature

Slow down the sharp transition (Sc to Cu) in CAM5-IP

Cloud fraction cross-section along GPCI

(%)

• CAM5-IP produces realistic low-level, middle level, and highlevel clouds;

NASA

Total cloud condensate (liquid + ice) cross-section along GPCI

• CAM5-IP produces more condensate in middle and upper troposphere than CAM5, and in low level than SPCAM-IPHOC

Remaining challenges

- TOA and surface energy balance
- Coupling of IPHOC with other physical parameterizations
- Reducing computational costs
- Improve the reality of the simulation reducing regional biases

TOA and surface energy balance

	SW	LW	Imbalance
SPCAM-IPHOC	240.40	240.60	-0.20
CAM5	240.01	234.82	5.19
CAM5-IPHOC	239.52	237.02	2.50
CERES-EBAF	239.60	240.20	-0.60

	SW-sfc LW-sfc		LH	SH Imbalance	
SPCAM-IPHOC	161.98	57.66	88.31	23.52	7.51
CAM5	160.95	54.19	86.17	17.97	-2.62
CAM5-IPHOC	157.00	54.54	82.94	19.33	-0.19
OBS.	162.98	54.47	87.94	19.37	1.20

Global distribution of annual mean LWP

NASA

Relatively small Liquid water path in ITCZ from CAM5-IP

Summary and conclusions

- The global and annual mean low cloud fraction from CAM5-IPHOC is within 5% of C3M observations. The spatial distributions of low clouds are realistic in several ocean basins.
- The global and annual liquid water water path increases compared with CAM5, but the correlation with SSM/I decreases. The liquid water path in ITCZ is relatively small.
- The southeast Pacific convergence zone (SPCZ) from CAM5-IPHOC is also weaker compared with other two models.
- The LWCF and SWCF are realistic compared with CERES. The effects of low clouds can clearly seen from SWCF.
- A reasonable cloud regime transition from CAM5-IPHOC is produced. The vertical structures in cloud fraction and condensate are improved compared with CAM5.
- The potential for realistic simulation of cloud processes is great with the IPHOC approach. Some deficiencies may be related to parameterizations beyond the IPHOC or their couplings.

Multiscale Modeling Framework (Grabowski 2001; Khairoutdinov and Randall 2001)

SPCAM: SAM CRM

- A CRM is embedded at each grid column (~100s km) of the host GCM to represent cloud physical processes
- The CRM explicitly simulates cloud-scale dynamics (~1 km) and processes
- Periodic lateral boundary condition for CRM (not extend to the edges)

SPCAM-IPHOC: SAM CRM

upgraded with a third-order turbulence closure (IPHOC)

+Double-Gaussian distribution of liquid-water potential temperature, total water mixing ratio and vertical velocity

+Skewnesses, i.e., the three third-order moments, predicted

+All first-, second-, third- and fourth-order moments, subgrid-scale condensation (cloud fraction) and buoyancy based on the same PDF

٩

 $G(q_t)$

CAM5

(Community Atmosphere Model version 5)

CAM5:

- Park-Bretherton macrophysics and turbulence, Zhang-McFarlane deep convection, Morrison-Genttleman microphysics, Liu et al. nucleation, RRTM radiation, CLM, and Lin finite-volume dynamic core
- + Model state is updated sequentially after each physical process

CAM5-IPHOC:

A third-order turbulence closure (IPHOC) replaces macrophysics, shallow cumulus and stratocumulus, and turbulence parameterization

+Double-Gaussian distribution of liquid-water potential temperature, total water mixing ratio and vertical velocity

+Skewnesses, i.e., the three third-order moments, the second moments of liquid-water potential temperature and total water mixing ratio, and PBL height diagnosed; Fluxes and second moment of vertical velocity predicted.

+All first-, second-, third- and fourth-order moments, subgrid-scale condensation (cloud fraction) and buoyancy based on the same PDF

Cloud fraction cross-section along 20°S

• CAM5-IP produces realistic stratocumulus and shallow cumulus clouds off south America.

Cloud liquid water cross-section along 20°S

• CAM5-IP produces more condensate off the coast, but the increase of cloud base height from Sc to Cu is minimal

