Time-Filtered Inverse Modeling of Land-Atmosphere Carbon Exchange

Nicholas Geyer and Scott Denning Colorado State University

Global CO₂ Sinks

ATMOS: 9.9 ± .5 GtC

LAND: 2.9 ± .8 GtC

OCEAN: 2.6 ± .5 GtC

Data/Images: Courtesy of Global Carbon Project

Canopy Carbon Balance

Net Ecosystem Carbon Exchange

NEE(t) = RESP(t) - GPP(t)

Flux Towers and You!

$$NEE = \overline{w'c'} - \frac{d}{dt} \int_{0}^{h} c(z)dz$$

turbulent flux

storage "flux"

- Nocturnal stable layer inhibits mixing of CO₂ produced by soil respiration from reaching instruments, accumulates below reference height
 - NEE underestimated
- Solar heating during early morning releases stored CO₂ in a big "burst"
 - NEE overestimated
- Maybe OK unless stored CO₂ "leaks out" by horizontal advection or gravitational drainage flow
- Try to correct for these effects by directly measuring changes in storage

Inverse Modeling of CO2

What's Been Done?

- CO₂ inversions are underconstrained problems
- Traditionally, inversion models have implemented spatial and spatio-temporal smoothing methods to provide constraint.
- These attempt to geolocate biological sources and sinks of CO₂ using NEE on weekly timescales.

$$NEE_{obs} = (1 + \beta_{NEE})NEE$$

CarbonTracker

- Estimates 52 weekly bias corrections to only NEE every year
- Uses pre-aggregated "ecoregions" to generalize ecosystems that are similar.

A Better Way

- Use the inversion methodology to isolate the long-lived biases of the component fluxes on several timescales.
 - Previous work used a single bias coefficient updated on a particular timescales.

$$NEE_{obs} = (1 + \beta_{RESP})RESP - (1 + \beta_{GPP})GPP$$

- Prevents "wasting" valuable statistical information from limited observations.
- Want to extend this to multiple terms to better associate biases with land model biological parameterizations.

$$\beta = \overline{\beta} + \beta' + \beta''$$

Temporal Smoothing Inversion Methodology

 Uses the Kalman Filter as a temporal smoother to estimate the long-lived biases in SiB4. No spatial dependence. No need for an transport model.

$$\Phi = \left[(\beta - \beta_{prior})^{T} C_{\beta}^{-1} (\beta - \beta_{prior}) + (G\beta - d)^{T} C_{d}^{-1} (G\beta - d) \right]$$

- Uses harmonics to provide a continuous estimate of the bias coefficients.
- Trade-offs

$$\beta = \overline{\beta} + \sum_{k=1}^{N/2} \left(\beta_{A,k} \cos(\frac{2\pi ki}{N}) + \beta_{B,k} \sin(\frac{2\pi ki}{N}) \right) + \beta''$$

Experiments

- Control vs Temporal Inversion
 - Control mimics CarbonTracker
 - Uses same Kalman Filter, but does not retain memory of previous bias coefficients or prior covariance estimates
 - 1 bias coefficient for NEE that updates weekly.
- EXP 1: Optimize NEE using NEE only
- EXP 2: Optimize NEE using GPP and RESP
- EXP 3: Optimize GPP and NEE using GPP and RESP
- Inversion Set-Up
 - 1 year assimilation cycle of daily averaged CO₂ fluxes
 - Waves K=0, 5 (12 bias coefficients estimated)
 - If necessary, covariance between corresponding NEE and GPP is half of NEE uncertainty.

FLUXNET Towers Used

The Simple Biosphere Model 4 (SiB4)

- 4th implementation of the original enzyme kinetic equations developed by Sellers et al. 1992. Improvements from previous models:
 - Prognostic Phenology (Stockli et al. 2008; 2011)
 - Usage of crop algorithm from SiB-Crop (Lokupitiya et al. 2009, Corbin et al. 2010)
 - Implements Carbon Pools from SiB-CASA (Schaefer et al. 2008)
- 11 carbon pools above and below ground
- 24 plant functional types replace the 11 biomes of SiB2 and SiB3
- Capable multiple PFTs in a grid cell
- MERRA driver meteorology used

Component Fluxes at Campbell River Mature Using NEE

Component Fluxes at Campbell River Mature Using GPP and NEE

Conclusions and Future Work

- Using a time smoothing inversion methodology allows for a more accurate representation of annual NEE budgets than current weekly estimates with a minimal number of estimated parameters.
- Computationally, we have lowered the number of estimates per year, but retained a much better estimate of fluxes.
- Using the component fluxes to optimize NEE is better than using NEE alone because their signal is slower.
- If only optimizing NEE using the component fluxes, we will only optimize NEE. However, if we include a component flux in the optimization, there all three fluxes are recovered with better seasonality.
- Future work should be to extend this methodology to fluorescence and CO₂ mixing ratio inversions on regional and global transects.
- Also, work should be to use the patterns and cycles deduced by the bias coefficients to influence biological parameterizations in our land-surface models.