CMMAP Winter 2015 Team Meeting

Effect of Scale Coupling Frequency on Simulated Climatology in the Uncoupled SPCAM 3.0

Sungduk Yu (sungduk@uci.edu) and Mike Pritchard UC Irvine

(Special thanks to Gabe Kooperman and Brian Mapes)

DJF SWCF RMSE

(Pritchard, CMMAP Team Meeting, 2012 August)

DJF SWCF RMSE

(Pritchard, CMMAP Team Meeting, 2012 August)

SPCAM3.0 is surprisingly well-tuned

A newer model ≠ a better tuned model

Tuning is increasingly important for existing and emerging SP models

SP models are getting more useable:

- several promising versions already exist
- computational resources keep expanding
- acceleration techniques are being suggested
 - e.g. reduced CRM set up (Pritchard, Bretherton, and DeMott, 2014) time scale separation (Jones, Bretherton, and Pritchard, 2014)
- UP (ultra-parameterization) models are under development

It's unclear what are tuning knobs in SP models

Scale coupling frequency as a tuning parameter in SP models?

Scale coupling frequency (f_{scale}) ~ 1/(timestep of GCM)

Model timestep known to be important in GCMs

CAM4 T340 resolution dtime: 5, 20, 40 min

Model timestep known to be important in GCMs

GCM $\Delta t >> \tau$ of deep/shallow convective parameterizations (5min) (60min and 30min)

==> excessive precipitation (e.g. grid point storms)

Model timestep known to be important in GCMs

(Williamson, 2013)

GCM $\Delta t >> \tau$ of deep/shallow convective parameterizations (5min) (60min and 30min)

==> excessive precipitation (e.g. grid point storms)

Simulation setup

Model:	SPCAM3.0
CRM setup:	Micro-CRM (4km x 8)
Control simulation:	dtime = 1800 [s]
Experiment simulation:	dtime = 600, 900, 3600 [s]

Simulation length:10 yearsSST:prescribed

Striking quasi-linear thermal and SWCF responses to increased scale coupling frequency

Reversing key biases introduced by reduced CRM domain

Reversing key biases introduced by reduced CRM domain

Liquid clouds systematically become less dense and less bright as scale coupling frequency increases

Liquid clouds systematically become less dense and less bright as scale coupling frequency increases

geographically robust, quasi-linear response

strong response along deep convective zones

convective mixing efficiency affected

Liquid clouds systematically become less dense and less bright as scale coupling frequency increases

High clouds reduce with scale coupling frequency but this response is weaker and more complex

High clouds reduce with scale coupling frequency but this response is weaker and more complex

Pritchard, Bretherton, and DeMott (2014)'s hypothesis:

Artificially throttled deep convection by trapped subsidence

Reduced CRM domain -> stronger subsidence -> preventing ventilation -> too much liquid cloud -> too strong SWCF Pritchard, Bretherton, and DeMott (2014)'s hypothesis:

Artificially throttled deep convection by trapped subsidence

Reduced CRM array (4km x 8)

CRM is not a closed system

This artifact is corrected by GCM's large scale dynamics

More frequent scale coupling \rightarrow more ventilation \rightarrow less liquid cloud

LWCF response is new and mysterious

Similar to GCMs, rain intensity tail amplifies

Similar to GCMs, rain intensity tail amplifies

(not expected with the trapped subsidence hypothesis)

Similar to GCMs, rain intensity tail amplifies

(Williamson, 2013)

No single mode of tropical organization dominates the rain intensity change

5S-5N precipitation wavenumber-frequency spectrum (symmetric)

mean power shifted to higher frequency

No single mode of tropical organization dominates the rain intensity change

5S-5N precipitation wavenumber-frequency spectrum (symmetric)

5S-5N OLR wavenumber-frequency spectrum (symmetric)

moist Kelvin wave strengthen

Scale coupling frequency is an interesting tuning parameter for superparameterized models (with caution)

SWCF and LWCF biases decrease

as f_{scale} increases

Appendix A: SPCAM3 vs. CAM3

SPCAM3.0, T42, Δt=10, 15, 30, 60 min

CAM3, T63, Δt=60, 20, 5 min

(Mishra and Sahany, 2011)

SLD60 SLD20 SLD5 (h)33.5 (i) -50

33 -55 LWCF SWCF -60 32.5 32 -65 SLD60 SLD20 SLD5

Higher f_{scale} (lower Δt)

-> stronger SWCF

-> stronger SWCF

!opposite sensitivity!

Appendix B: CRM mass flux statistics

(Scale coupling frequency experiment)

(CRM domain experiment by Pritchard et al, 2014)

Appendix C: Precipitation std dev

