Untangling microphysical impacts on deep convection applying a novel modeling methodology

Wojciech W. Grabowski

NCAR, Boulder, USA

Microphysical piggybacking...

Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. *J. Atmos. Sci.* **71**, 4493-4499.

Grabowski W. W., 2014: Untangling microphysical impacts on deep convection applying a novel modeling methodology *J. Atmos. Sci.* (in review).

The traditional approach: two (or many) simulations...

"D" for driving the dynamics "P" for piggybacking the simulated flow

"P" for piggybacking the simulated flow "D" for driving the dynamics

Rosenfeld et al. *Science*, 2008 "Flood or Drought: How Do Aerosols Affect Precipitation?"

doi: 10.1256/qj.04.147

Daytime convective development over land: A model intercomparison based on LBA observations

By W. W. GRABOWSKI^{1*}, P. BECHTOLD², A. CHENG³, R. FORBES⁴, C. HALLIWELL⁴, M. KHAIROUTDINOV⁵, S. LANG⁶, T. NASUNO⁷, J. PETCH⁸, W.-K. TAO⁶, R. WONG⁸, X. WU⁹ and K.-M. XU³

Current simulations:

Extended to 12 hrs 50 x 50 km² horizontal domain, 400 m gridlength 24 km deep domain, 81 levels, stretched grid

1. Contrasting simulations applying different microphysical schemes: separating dynamical and microphysical effects.

2. Contrasting simulations assuming clean and polluted conditions (with droplet concentration of 100/1,000 per cc for clean/polluted): exploring dynamical basis of deep convection invigoration in polluted environments. Two microphysics schemes: Grabowski 1998 (G98) – simple ice: SIM Grabowski 1999 (G99) – more complex ice: IAB

Two collection of simulations:

C1: 12 simulations piggybacking with SIM and IAB: 3 pristine ensemble members for D-SIM/P-IAB and 3 for D-IAB/P-SIM 3 polluted ensemble members for D-SIM/P-IAB and 3 for D-IAB/P-SIM

C2: 12 simulations piggybacking with polluted and pristine:
3 SIM ensemble members for D100/P1000 and 3 for D1000/P100
3 IAB ensemble members for D100/P1000 and 3 for D1000/P100

Example of model results: maps of the total water path (liquid plus ice) from a single simulation from IAB ensemble

contour interval: 0.1 x maximum

12 hr

Differences between left and right panel suggest modified dynamics between SIM and IAB driving...

set	accumulation for each member (in mm)	ensemble mean, st. dev.	D-P mean, st. dev.
pristine simulations:			
D-SIM	1.76, 1.81, 1.73	1.77, 0.06	-2.35, 0.09
D-IAB	2.91, 3.04, 2.79	2.91, 0.12	1.65, 0.05
P-IAB	4.06, 4.22, 4.08		
P-SIM	1.24, 1.34, 1.20		
polluted simulations:			
D-SIM	1.65, 1.72, 1.60	1.66, 0.05	-2.65, 0.13
D-IAB	2.85, 2.91, 2.78	2.85, 0.05	1.75, 0.06
P-IAB	4.31, 4.45, 4.15		
P-SIM	1.08, 1.14, 1.08		

Piggybacking with the same scheme: D100/P1000 versus D1000/P100

Pristine simulations produce more rain...

Piggybacking with the same scheme: D100/P1000 versus D1000/P100

Pristine simulations produce more rain...

IAB

	12-hr rain accumulations (mm)	D ensemble mean, st. dev.
D100	2.91, 3.03, 2.79	2.91, 0.10
D1000	3.01, 2.90, 2.91	2.94, 0.09

IAB

?

IAB

Comparing cloud updraft buoyancies in IAB D/P simulation:

Conclusions:

1. The piggybacking methodology allows confident assessment of impacts of cloud microphysical parameterizations. It decouples their effect from the impact on the cloud dynamics.

2. Contrasting D/P and P/D simulations allows investigating the impact on the dynamics. The fact that the D-P differences are similar (modulo the sign) between D/P and P/D implies small impact on the cloud dynamics. Large differences imply significant impact, like in the set C1.

3. The simulations call into question the dynamic basis of convective invigoration in polluted environments.