

Center for Multiscale Modeling of Atmospheric Processes CMMAP Reach for the sky.

A Multilayer Canopy Model for CLM

Gordon Bonan, Ned Patton, Keith Oleson National Center for Atmospheric Research Boulder, Colorado, USA

Ian Harman CSIRO Marine and Atmospheric Research

20th CMMAP Team Meeting Boulder, Colorado 6 January 2016

NCAR is sponsored by the National Science Foundation

Land management

Forest management

Cumulative percent of grid cell harvested (1850 - 2005)

Agricultural management

8 crop functional types:

Maize (temperate, tropical) Soybean (temperate, tropical) Spring wheat Sugarcane Cotton Rice

20th century land-cover change and climate

15 CMIP5 models: Δ JJA temperature with land-cover change

+ Δ albedo \rightarrow cooling

- Δ ET \rightarrow warming
- $\Delta z_0 \rightarrow$ warming

Humans, ecosystems, and climate

Much of the biosphere is now managed by human activities

Do the details of land-atmosphere coupling matter as we assess the climatic impacts of land management and land-cover change?

The CLM5 perspective of the land surface

Multi-scale model evaluation

Two ways to model plant canopies

Photographs of Morgan Monroe State Forest tower site illustrate two different representations of a plant canopy: as a "big leaf" (below) or with vertical structure (right)

Big-leaf canopy

- Two "big-leaves" (sunlit, shaded)
- Radiative transfer integrated over LAI (two-stream approximation)
- Photosynthesis calculated for sunlit and shaded big-leaves

Multilayer canopy

- Explicitly resolves sunlit and shaded leaves at each layer in the canopy
- Light, temperature, humidity, wind speed, H, E, A_n, g_s, ψ_L
- New opportunities to model stomatal conductance from plant hydraulics (g_s, ψ_L)

A multilayer canopy model for CLM

Two ways to model plant canopies

AmeriFlux

3 deciduous broadleaf forests3 evergreen needleleaf forests51 site x years

$CLM4.5 \rightarrow multilayer model$

Multilayer canopy improved relative to CLM4.5 (H, GPP)

Ball-Berry \rightarrow stomatal optimization

 $\Delta A_n/\Delta E_l$ and ψ_L optimization improved relative to Ball-Berry. Especially apparent at US-Me2 (drought-stressed)

> Bonan et al. (2014) Geosci. Model Dev. 7:2193-2222

Drought stress: US-Me2, July 2002 (Ponderosa pine)

Bonan et al. (2014) Geosci. Model Dev. 7:2193-2222

Scalar profiles

Coupling challenge: scalar profiles depend on source (leaf, soil) fluxes but these fluxes depend on scalar profiles

Leaf energy balance

$$C_L \frac{\partial T_L}{\partial t} = R_n - H_L(T_L) - \lambda E_L(T_L)$$

Conservation equation for heat

$$\rho_{\rm m} \, c_{\rm p} \, \frac{\partial T(z)}{\partial t} + \frac{\partial H(z)}{\partial z} = H_{\rm L}(z)$$

Conservation equation for water vapor

$$\rho_{\rm m} \frac{\partial w(z)}{\partial t} + \frac{\partial E(z)}{\partial z} = E_{\rm L}(z)$$

Soil surface balance

$$R_n - H(T_g) - \lambda E(T_g) - G(T_g) = 0$$

Canopy turbulence and the roughness sublayer

Profiles from the CSIRO flux station near Tumbarumba

Key collaborators: Ned Patton (NCAR) Ian Harman (CSIRO Marine and Atmospheric Research)

Coupling above and within plant canopies

 $H(z) = -\rho_m c_p K_c(z) \frac{\partial T(z)}{\partial z}$ $E(z) = -\rho_m K_c(z) \frac{\partial w(z)}{\partial z}$

Collaborators: Ned Patton (NCAR) Ian Harman (CSIRO Marine and Atmospheric Research)

US-Ha1, July 2001 (DBF)

US-Bo1, July 1999 (crop)

Humans, ecosystems, and climate

Earth system model paradigm

+ Δ albedo \rightarrow cooling - Δ ET \rightarrow warming - Δ z₀ \rightarrow warming

Observational analyses

MODIS: albedo, ET, T_{rad} Flux tower: T_s

Process modeling

Let the answer emerge from a theory rather than being imposed *a priori* in a model