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Carbon Sources and SinksCarbon Sources and Sinks
• Half the carbon from fossil 

fuels remains in the 
atmosphere

• The other half goes into 
land and oceans

• Land sink was unexpected 
is very noisy, and remains 
unreliable in future

• Future of carbon sinks is 
much harder to predict 
than temperatures

Global Carbon Project



• Coupled simulations of climate and 
the carbon cycle (CMIP3, C4MIP)

• Given nearly identical human 
emissions, different models project 
dramatically different futures!

• Mostly depends on CO2 fert & temp
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Even Worse in CMIP5 !Even Worse in CMIP5 !

Hoffman et al (2014)
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Projections for Individual CMIP5 Models
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Figure 8. (a) and (c) CO2-induced radiative forcing and temperature change computed from the prognostic atmospheric CO2 mole fraction for each of the CMIP5 models. (b) and (d)
Corresponding radiative forcing and temperature change for the multimodel mean and contemporary CO2 tuned model (CCTM). The pink range surrounding the CCTM represents
the uncertainty propagated from the 95% confidence interval from the linear model for the CCTM atmospheric CO2 trajectory. The blue range surrounding the multimodel mean
represents the uncertainty propagated from the 95th percentile of the range for the standard deviation of the multimodel mean atmospheric CO2 trajectory.

structure and large-scale circulation have the potential to limit CO2 uptake by the oceans and are likely to
contribute to a persistent atmospheric CO2 bias over time because many of the physical processes regulat-
ing mixing are unlikely to change rapidly. Biases in atmospheric CO2 caused by this type of mechanism likely
grow through time as the atmospheric CO2 growth rate accelerates and transport of carbon out of the mixed
layer becomes an increasing bottleneck to net ocean carbon uptake. Our finding that many models under-
estimated the ocean anthropogenic carbon inventory (Figures 3 and S2) is consistent with other studies
indicating some ocean models exhibit weak meridional overturning circulation [Downes et al., 2011; Sallée
et al., 2013]. However, additional research is needed to understand the causes of model-to-model variations
in ocean carbon uptake for the CMIP5 models.

On land, similar deficiencies in model structure have the potential to contribute to persistent multidecadal
biases in carbon fluxes. Key regulators of carbon uptake on land in response to elevated levels of atmo-
spheric CO2 include, for example, the response of gross primary production (GPP) to CO2 concentration,
the allocation of GPP to longer lived woody pools, and subsequent increases in soil organic matter pools
[Thompson et al., 1996; Luo et al., 2006]. Carboxylation parameterizations of Rubisco often follow the form of
a modified Michaelis-Menten equation [Farquhar et al., 1980] and vary considerably among models. Models
that have lower estimates of the maximum carboxylation rate in different biomes, in response to nitrogen
limitation (e.g., Thornton et al. [2007]) or other factors, are likely to have smaller CO2-driven increases in GPP
by the end of the twentieth or 21st centuries. Similarly, models that have reduced allocation of GPP to wood
pools will also have lower rates of carbon uptake, given the same trajectory of GPP increases. Since in many
models, the maximum carboxylation rate is either held constant or unlikely to rapidly change in response
to changing environmental conditions, this parameterization can induce a long-term bias in carbon fluxes.
The same argument applies to allocation submodels: although many plant allocation models are dynamic
[Friedlingstein et al., 1999; Arora and Boer, 2005; Litton et al., 2007] and respond to regional variations in light
availability, soil moisture, and other environmental controls, many aspects of these models are unlikely
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• More processes (land use, 
regrowth, nitrogen, fire)

• Now more than 350 ppm 
spread in CO2!

• For identical emissions, 
radiative forcing varies by 
almost 2 W m-2 (more than 
RCP 4.5 vs RCP 6)

• Warming varies by 1.5 °C 
(comparable to spread in 
physical climate)

• Carbon cycle impacts 
climate uncertainty as much 
as clouds or people!
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Future vs. Contemporary Atmospheric CO2 Mole Fraction
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Figure 4. (a) Future (2060) versus contemporary (2010) atmospheric CO2 mole fraction fit for CMIP5 emissions-forced simulations of
RCP 8.5 and (b) future (2100) versus contemporary (2010) atmospheric CO2 mole fraction for the same set of model simulations. The
observed atmospheric CO2 mole fraction is represented by the vertical line at 384.6 ppm with an uncertainty range (±0.5 ppm) shown
in gray. The linear regression model is represented by the blue line surrounded by red dashed lines indicating a 95% confidence interval.
While a point is plotted for the historical observed atmospheric CO2 and the RCP 8.5 concentration trajectory derived from a reduced
form model without explicit feedbacks, that point is not included in the linear regression.

4. Discussion
4.1. Why Do Carbon Cycle Biases Persist on Decadal Timescales?
In our analysis, we found that the ordering among model predictions of atmospheric CO2 persisted for sev-
eral decades. Models that had the highest positive biases near the end of the observational record in 2010
were more likely to have higher positive biases in earlier decades, during the latter half of the twentieth cen-
tury (Figures 1 and 8). Similarly, this same set of models also had the highest set of future atmospheric CO2

projections during the middle and latter half of the 21st century in response to RCP 8.5 emissions (Figure 4).
Many structural model elements probably contributed to this bias and ordering persistence, including pro-
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Figure 5. The coefficients of determination (R2) for the multimodel bias structure, from which the contemporary CO2 tuned model
(CCTM) was derived, relative to the set of CMIP5 model atmospheric CO2 mole fractions (black) and oceanic (blue) and land (green)
anthropogenic carbon inventories in 2010, defined as the 5 year mean for the period 2006–2010.
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Past as PreludePast as Prelude

Hoffman et al (2014)

• Models that 
underpredict
contemporary CO2

also predict low CO2

in the future, and 
vice versa

• Evaluation of  past 
carbon cycle 
simulations 
constrain future 
feedback 



Carbon ConstraintCarbon Constraint

Hoffman et al (2014)
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Contemporary CO2 Tuned Model (CCTM)
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Figure 6. The contemporary CO2 tuned model (CCTM) atmospheric CO2 mole fraction estimate compared to the CMIP5 multimodel
mean trajectory. The pink range surrounding the CCTM represents the 95% confidence interval from the linear model around the con-
temporary observation projected onto the y axis of historical or future CO2 mole fractions for every year. The blue line represents the
multimodel mean CO2 trajectory, and the blue range indicates the 95th percentile of the range for the multimodel standard deviation,
assuming a normal distribution (1.96 !).

cesses that influence the strength of concentration-carbon feedbacks. One important example includes
the representation of ocean mixing processes that regulate the formation of intermediate and deep waters
in the ocean. Past work from analysis of 13 simulations from the second phase of the Ocean Carbon Cycle
Model Intercomparison Project indicated that climate models often underestimate this overturning in the
Southern Ocean [Doney et al., 2004; Matsumoto et al., 2004; Dutay et al., 2002]. In addition, Russell et al. [2006]
performed an intercomparison of the Southern Ocean circulation in CMIP3 control simulations and found
that the maximum wind stress in the Southern Hemisphere, nominally associated with the Antarctic Cir-
cumpolar Current, was located too far equatorward in most models. In ESMs, such deficiencies in model
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Figure 7. The probability density of CO2 mole fraction predictions from the CCTM peaks lower than the probability density for multi-
model mean for (a) 2060 and (b) 2100. In addition, the width of the probability density is much smaller for the CCTM, by almost a factor
of 6 at 2060 and almost a factor of 5 at 2100, indicating a significant reduction in the range of uncertainty for the CCTM prediction.
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cesses that influence the strength of concentration-carbon feedbacks. One important example includes
the representation of ocean mixing processes that regulate the formation of intermediate and deep waters
in the ocean. Past work from analysis of 13 simulations from the second phase of the Ocean Carbon Cycle
Model Intercomparison Project indicated that climate models often underestimate this overturning in the
Southern Ocean [Doney et al., 2004; Matsumoto et al., 2004; Dutay et al., 2002]. In addition, Russell et al. [2006]
performed an intercomparison of the Southern Ocean circulation in CMIP3 control simulations and found
that the maximum wind stress in the Southern Hemisphere, nominally associated with the Antarctic Cir-
cumpolar Current, was located too far equatorward in most models. In ESMs, such deficiencies in model
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model mean for (a) 2060 and (b) 2100. In addition, the width of the probability density is much smaller for the CCTM, by almost a factor
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Predicted CO2 in 2100 
(identical emissions)

• Fivefold reduction in model spread in 2100

• No mechanism … simple scalar multiplication of  sinks



Changing 
Hydrologic 

Cycle

Changing 
Hydrologic 

Cycle
• Much more rainfall 

over tropical Pacific

• Amazon gets less 
rain (Walker Cell)

• Lower RH

• Less soil moisture

• Amazon dieback in 
some models 
releases lots of  CO2



Mechanistic Constraints
on Amazon Drought Response 
Mechanistic Constraints
on Amazon Drought Response 

1. Seasonal drought response

2. Space-for-time (Transect)

3. Interannual drought response

4. Severe persistent drought

5. Climatological drought



Seasonal DroughtSeasonal Drought

• Dry season CO2 uptake, wet season CO2 release

• A decade ago, most models got this badly wrong!

• Most now account for root uptake at depth

Month

N
E

E
 (f

lu
x 

to
 a

tm
os

ph
er

e)
 k

gC
/h

a/
m

on
th

-1
00

0
-5

00
0

50
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Model output is mean of 4 gridpoints: -54.5 > longitude > -55.5,  -2.5 > latitude > -3.5, for neutral years 1980-81,1984-85,1990, & 1993-95.
Data is from Tapajos, km67 site (2.85 S, 55 W, from 10-Apr-01 to 08-May-02) & km83 site (3.05 S, 55 W, from 1-Jul-00 to 1-Jul-01).

0

20

40

60

pr
ec

ip
 

(c
m

 p
er

 m
on

th
)

TEM    / neutral yrs
IBIS     \  (1980-95)
Data (7/00-7/02)

neutral yrs, 1980-95
Site (7/00-7/02)

Baker et al (2008)

Saleska et al (2003)



Space-for-Time: 
Amazon Transect
Space-for-Time: 

Amazon Transect



Amazon TransectAmazon Transect

Please cite this article in press as: Baker, I.T., et al., Surface ecophysiological behavior across vegetation and moisture gradients in tropical South
America. Agric. Forest Meteorol. (2012), http://dx.doi.org/10.1016/j.agrformet.2012.11.015
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Fig. 4. Mean annual cycles of modeled and observed carbon flux for the 5 stations, superimposed on a histogram of monthly mean precipitation. Locations of towers are
shown in Fig. 1. Modeled Gross Primary Productivity (GPP) and total respiration are shown at the top of each panel; dry season is shaded.

Both observed and simulated behaviors are consistent with
a light-limited environment. The temperature, humidity and soil
moisture regimes are favorable for both photosynthesis and respi-
ration year-round, as indicated by the large gross fluxes and lack of
seasonal cycles shown in Fig. 4 (panel a). During the dry season,
reduced precipitation is associated with higher radiation levels,
which elevates GPP. This response can also occur during short dry
periods in other months. Increased insolation is also correlated
with slightly elevated temperatures, which can enhance surface
respiratory processes. It appears that GPP responds more rapidly
than respiration to changes in forcing, so that short-term variability
and the lag in respiration response combine to create short-term,
small amplitude net fluxes of carbon that lack an obvious seasonal
cycle.

3.2. Tapajos River National Forest: K67 and K83

The K67 and K83 sites are located in Tapajos River National For-
est, approximately 70 km south of the city of Santarém, Pará, Brazil
(Fig. 1). These sites are described by Saleska et al. (2003),  da Rocha
et al. (2004),  Miller et al. (2004),  Goulden et al. (2004),  and Hutyra
et al. (2007).  The Tapajos sites, while quite close to each other
(within 20 km or so), are distinct in that K83 was selectively logged
beginning in 2001, during the period used in this study. K83 and
K67 have been considered simultaneously in other studies: Saleska
et al. (2003) considered data prior to logging, but Costa et al. (2010)
do not distinguish between logged and non-logged intervals. This
is supported by Miller et al. (2007, 2011) who report that the selec-
tive logging at K83 does not appreciably influence observed fluxes

of carbon and energy when compared to K67. For this study we will
consider K67 and K83 in combination.

Latent heat flux, both observed and simulated (Fig. 3, panels
b and c), increases at the outset of the dry season and decreases
slightly as seasonal drought progresses. Interestingly, simulated
H exceeds observed at K67 significantly in the wet  season, and
only slightly in the dry season, although simulated Rnet is similar
to observed. At K83, simulated wet season H is close to observed,
and overestimated during the dry season, but observed Rnet exceeds
simulated.

At these sites, an annual cycle in carbon flux has been observed
(Saleska et al., 2003), wherein there is regular carbon efflux during
the wet season and uptake during seasonal drought. Our simula-
tions, corroborated by observed carbon flux (Fig. 4, panels b and
c), shows annual amplitude of 80–100 g C m−2 in both the GPP
and respiration cycles, but with a shift in phase that determines
the annual carbon flux signal. Maximum respiratory flux at the
Tapajos River sites occurs late in the wet season or soon after
rains have diminished; soils are at maximum moisture levels, and
increased temperature warms the soil slightly (temperature cycle
shown in Fig. 1, panels b and c). Without replenishing rains, sur-
face litter and near-surface soil dries out, and respiration decreases.
Annual minimum respiration occurs just prior to the onset of
the rainy season. Photosynthetic processes show a similar annual
cycle in amplitude, but phase-lagged to respiration by 2–3 months.
Respiration is quickly responsive to cessation of rainfall, while
mechanisms described in Section 2 allow forest ecophysiological
function to be maintained for longer periods. This difference in
response time, coupled with the annual rainfall amount, soil depth,

• Less annual 
precip and 
longer dry 
seasons 
from 
NW to SE

• Transition 
from 
aseasonal
GPP to dry 
season 
uptake to 
wet season 
uptake

non-seasonal 
GPP & NEE dry season

uptake

dry season
uptake

dry season
emission

dry season
emission

Baker et al (2013)
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The 2010 Amazon Drought
Simon L. Lewis,1*† Paulo M. Brando,2,3* Oliver L. Phillips,1

Geertje M. F. van der Heijden,4 Daniel Nepstad2

Several global circulation models (GCMs)
project an increase in the frequency and
severity of drought events affecting the

Amazon region as a consequence of anthropo-
genic greenhouse gas emissions (1). The proximate
cause is twofold, increasing Pacific sea surface
temperatures (SSTs), which may intensify El Niño
Southern Oscillation events and associated peri-
odic Amazon droughts, and an increase in the fre-
quency of historically rarer droughts associatedwith
high Atlantic SSTs and northwest displacement of
the intertropical convergence zone (1, 2). Such
droughts may lead to a loss of some Amazon for-
ests, which would accelerate climate change (3).
In 2005, a major Atlantic SST–associated drought
occurred, identified as a 1-in-100-year event (2).
Here,we report on a second drought in 2010,when
Atlantic SSTs were again high.

We calculated standardized anomalies from a
decade of satellite-derived dry-season rainfall data
(Tropical Rainfall Measuring Mission, 0.25° res-
olution) across 5.3 million km2 of Amazonia for
2010 and 2005 (4). We used identical reference
periods to allow a strict comparison of both drought
events (4). On the basis of this index, the 2010
drought wasmore spatially extensive than the 2005
drought (rainfall anomalies ≤ –1 SD over 3.0
million km2 and 1.9million km2 in 2010 and 2005,
respectively; Fig. 1 and fig. S1). Because dry-season

anomalies do not necessarily correlate with water
stress for forest trees, we also calculated the max-
imum climatological water deficit (MCWD) for
each year as the most negative cumulative value of
water input minus estimated forest evapotranspira-
tion (5). This measure of drought intensity corre-
lates with Amazon forest tree mortality (6). In
2010, the difference in MCWD from the decadal
mean that significantly increases tree mortality
(≤ –25 mm) spanned 3.2 million km2, compared
with 2.5 million km2 in 2005. The 2010 drought
had three identifiable epicenters in southwestern
Amazonia, north-central Bolivia, and Brazil’sMato
Grosso state. In 2005 only a single southwestern
Amazonia epicenter was detectable (fig. S1).

The relationship between the change inMCWD
and changes in aboveground carbon storage
derived from forest inventory plots affected by
the 2005 drought (6) provides a first approximation
of the biomass carbon impact of the 2010 event.
Summing the change in carbon storage predicted
by the 2010 MCWD difference across Amazonia
gives a total impact of 2.2 Pg C [95% confidence
intervals (CI) 1.2 and 3.4], comparedwith 1.6 PgC
for the 2005 event (CI 0.8, 2.6). These values are
relative to the predrought carbon uptake and rep-
resent the sum of (1) the temporary cessation of
biomass increases over the 2-year drought mea-
surement interval (~0.8 Pg C) and (2) biomass lost

via tree mortality, a committed carbon flux from
decomposition over several years (~1.4 Pg C after
the 2010 drought). Inmost years, these forests are a
carbon sink; drought reverses this sink.

Considerable uncertainty remains, related to the
soil characteristics within the epicenters of the
2010 drought, which couldmoderate or exacerbate
climatic drying, whether a second drought will kill
more trees (i.e., those damaged by the initial
drought) or fewer (i.e., if most drought-susceptible
trees are already dead), and whether drought slows
soil respiration (temporarily offsetting the biomass
carbon source). New field measurements will be
required to refine our initial estimates.

The two recent Amazon droughts demonstrate
a mechanism bywhich remaining intact tropical for-
ests of South America can shift from buffering the
increase in atmospheric carbon dioxide to accelerat-
ing it. Indeed, two major droughts in a decade may
largelyoffset thenetgainsof~0.4PgCyear−1 in intact
Amazon forest aboveground biomass in nondrought
years. Thus, repeated droughts may have important
decadal-scale impacts on the global carbon cycle.

Droughts co-occur with peaks of fire activity
(5). Such interactions among climatic changes, hu-
man actions, and forest responses represent
potential positive feedbacks that could lead to
widespread Amazon forest degradation or loss (7).
The significance of these processes will depend on
the growth response of tropical trees to increases in
atmospheric carbon dioxide concentration, fireman-
agement, and deforestation trends (3, 7). Nevertheless,
any shift to drier conditions would favor drought-
adapted species, and drier forests store less carbon
(8). If drought events continue, the era of intact
Amazon forests buffering the increase in atmo-
spheric carbon dioxide may have passed.
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Fig. 1. (A andB) Satellite-derived standardized anomalies for dry-season rainfall for the twomost extensive
droughts of the 21st century in Amazonia. (C andD) The difference in the 12-month (October to September)
MCWD from the decadal mean (excluding 2005 and 2010), a measure of drought intensity that correlates
with tree mortality. (A) and (C) show the 2005 drought; (B) and (D) show the 2010 drought.
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Precip – Evaporation Deficit
Lewis et al (2011)

• Lowest Amazon flow ever 
measured at Manaus

• Basin-wide NEE reduced 
by 0.5 GtC yr-1 estimated 
from CO2 vertical profiles

• Severe depression of GPP 
simulated across southern 
Amazon and Cerrado

LETTER
doi:10.1038/nature12957

Drought sensitivity of Amazonian carbon balance
revealed by atmospheric measurements
L. V. Gatti1*, M. Gloor2*, J. B. Miller3,4*, C. E. Doughty5, Y. Malhi5, L. G. Domingues1, L. S. Basso1, A. Martinewski1, C. S. C. Correia1,
V. F. Borges1, S. Freitas6, R. Braz6, L. O. Anderson5,7, H. Rocha8, J. Grace9, O. L. Phillips2 & J. Lloyd10,11

Feedbacks between land carbon pools and climate provide one of the
largest sources of uncertainty in our predictions of global climate1,2.
Estimates of the sensitivity of the terrestrial carbon budget to cli-
mate anomalies in the tropics and the identification of the mechan-
isms responsible for feedback effects remain uncertain3,4. The Amazon
basin stores a vast amount of carbon5, and has experienced increas-
ingly higher temperatures and more frequent floods and droughts
over the past two decades6. Here we report seasonal and annual
carbon balances across the Amazon basin, based on carbon dioxide
and carbon monoxide measurements for the anomalously dry and
wet years 2010 and 2011, respectively. We find that the Amazon
basin lost 0.48 6 0.18 petagrams of carbon per year (Pg C yr21)
during the dry year but was carbon neutral (0.06 6 0.1 Pg C yr21)
during the wet year. Taking into account carbon losses from fire by
using carbon monoxide measurements, we derived the basin net
biome exchange (that is, the carbon flux between the non-burned
forest and the atmosphere) revealing that during the dry year, vege-
tation was carbon neutral. During the wet year, vegetation was a net
carbon sink of 0.25 6 0.14 Pg C yr21, which is roughly consistent with
the mean long-term intact-forest biomass sink of 0.396 0.10 Pg C yr21

previously estimated from forest censuses7. Observations from Ama-
zonian forest plots suggest the suppression of photosynthesis dur-
ing drought as the primary cause for the 2010 sink neutralization.
Overall, our results suggest that moisture has an important role in
determining the Amazonian carbon balance. If the recent trend of
increasing precipitation extremes persists6, the Amazon may become
an increasing carbon source as a result of both emissions from fires
and the suppression of net biome exchange by drought.

To observe the state, changes and climate sensitivity of the Amazon
carbon pools we initiated a lower-troposphere greenhouse-gas sam-
pling programme over the Amazon basin in 2010, measuring bi-weekly
vertical profiles of carbon dioxide (CO2), sulphur hexafluoride (SF6)
and carbon monoxide (CO) from just above the forest canopy to 4.4 km
above sea level (a.s.l.) at four locations spread across the basin (Fig. 1).
Repeated measurements of the CO2 mole fraction in the low to mid-
troposphere have the ability to constrain surface CO2 fluxes at regional
scales (about 105–106 km2) including all known and unknown processes.
This is in contrast to small temporal8,9 and spatial10,11 scale atmospheric
approaches, which need substantial and difficult-to-verify assumptions
to scale up; it is also in contrast to basin-scale surface-based studies,
which include only a subset of relevant processes3,12,13.

Our selection of sites reflects the dominant mode of horizontal air
flow at mid- to low-troposphere altitudes across the Amazon basin, with
air entering the basin from the equatorial Atlantic Ocean, sweeping

over the tropical forested region towards the Andes and turning south-
wards and back to the Atlantic (Fig. 1). Air at the end-of-the-basin sites
Tabatinga (TAB) and Rio Branco (RBA) is thus exposed to carbon fluxes
from a large fraction of the basin’s rainforest vegetation. Flux signatures

*These authors contributed equally to this work.
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Figure 1 | Station’s region of influence (‘footprint’). The combined
sensitivity of all observed atmospheric CO2 concentrations to surface fluxes
(that is, measurement ‘footprints’) is shown for the four sites TAB, RBA, SAN
and ALF (solid black dots). Sensitivity is given in units of concentration (p.p.m.)
per unit flux (mmol m22 s21). As seen in Extended Data Fig. 6a, footprints
from the four sites overlap substantially. Footprints are calculated at 0.5-degree
resolution using ensembles of stochastically generated back trajectories using
the FLEXPART Lagrangian particle dispersion model and then calculating
the residence times of these back trajectories in the 100 m layer above the
surface. Values above 0.001 p.p.m.mmol21 m22 s21 comprise 97% of the land
surface signal and values above 0.01 p.p.m.mmol21 m22 s21 comprise 50%
of the land surface signal; thus apparently small values are still important
because they occupy a large area. Black arrows represent average climatological
wind speed and direction in June, July and August (from the National Centers
for Environmental Prediction (NCEP); http://www.esrl.noaa.gov/psd/data/
gridded/data.ncep.reanalysis.html) averaged between the surface and
600 mbar. Open symbols (RPB and ASC) represent the NOAA tropical Atlantic
sites used to define the background concentrations of CO2, CO and SF6 coming
into the Amazon basin. Solid green dots indicate the locations of forest plot
clusters where long-term biomass gains and respiration have been observed.

7 6 | N A T U R E | V O L 5 0 6 | 6 F E B R U A R Y 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Gatti et al (2014)
CO2 flux footprints

SiB Sept GPP:
2010 - 2009



SiB4GOME2

Chrlorophyll
Fluorescence
Chrlorophyll

Fluorescence

Solar-Induced Fluorescence (W m-2 Sr-1 nm-1) Sept 2010 – Sept 2009 
retrieved from GOME2  (Joanna Joiner, pers comm.) and simulated by SiB4
Solar-Induced Fluorescence (W m-2 Sr-1 nm-1) Sept 2010 – Sept 2009 
retrieved from GOME2  (Joanna Joiner, pers comm.) and simulated by SiB4
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Persistent DroughtPersistent Drought

• Panels used to 
divert rainfall from 
forest floor.

• 50-60% of  rainfall 
was diverted from 
2000-2004

• Used observations 
from tower (2001-
2003) to drive SiB, 
reduced rain by 
60% during wet 
seasons



5 Years of (Simulated) Hell5 Years of (Simulated) Hell

Year 1: Normal
Year 2-6 Drought
Year 7: Normal

Impact noticeable 
from year 2,  but 
drops in GPP & 
Resp cancel

Response stabilized 
from years 4-6

Recovery in year 7



Simulated Response to 
Persistent Drought

Simulated Response to 
Persistent Drought

• Model responds too strongly to imposed drought 
stress in first three years

• Long-term response and recovery pretty good
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Climatological 
Drought Response

Climatological 
Drought Response

• Position of Forest-Cerrado
ecotone is a result of  long-
term adjustment to climate 
and disturbance

• Dynamic global vegetation 
models (DGVM) must 
simulate this boundary 

• Evaluate physiology, 
allocation, competition, 
disturbance

• Most relevant timescales for 
climate change



SummarySummary
• Carbon-climate feedbacks are among the most uncertain 

emergent phenomena in Earth system models

• Contribution to spread in radiative forcing is as great as 
clouds, radiation, and aerosol, even comparable to 
unknown FF emissions

• Mechanistic constraints on carbon-climate feedbacks may 
reduce ESM spread more than any other near-term priority

• Example: Amazon drought response benchmarks
- Seasonal drought and Amazon Transect (flux towers)
- Severe Interannual Droughts (new observations of SIF) 
- Persistent Droughts 

(Throughfall Exclusion Experiments)
- Climatological drought response 

(Dynamic Simulation of Forest-Cerrado Ecotone)



Presentations

1. Denning -- Multiscale L/A work after CMMAP
2. Ian Baker – Subgrid-scale variations of  soil moisture
3. Parker Kraus – Site simulations with SiB-SAM
4. Jian Sun – Global land-atmosphere coupling in SPCAM
5. Gordon Bonan – Multilayer Canopy Model



Post-CMMAP 
Land-Atm Work

• DOE ASR: Effects of land-atmosphere heterogeneity on 
convective organization at ARM in SASL, MASL, MAML

• DOE ESS: Climate Feedback and Tropical Forests 
• NASA: Soil moisture heterogeneity via “bins”
• NSF SSI: Flux Coupler “Lite” for CLM-SAM, CLM-WRF
• UCI: Mike Pritchard NSF CAREER award
• UCI: Gabe Kooperman PostDoc Fellowship
• NCAR: Multilayer Canopy Work


