Predicting the Future by Explaining the Past:

Constraining Carbon-Climate Feedback Using Contemporary Observations

Scott Denning, Ian Baker, Kathy Haynes Colorado State University

Reach for the sky.

Anna B. Harper University of Exeter, UK

Also thanks to Joanna Joiner, NASA GSFC

Carbon Sources and Sinks

- **Half the carbon from fossil fuels remains in the atmosphere**
- **The other half goes into land and oceans**
- **Land sink was unexpected is very noisy, and remains unreliable in future**
- **Future of carbon sinks is much harder to predict than temperatures**

Carbon-Climate Futures

Friedlingstein et al (2006)1000. Land 900 Atmosphere CO2 (ppm) 800. 700. Atmospheric 600.

500.

400

300

1850

1900

12.0

10.0 8.0

6.0

 4.0

 2.0

• **Coupled simulations of climate and the carbon cycle (CMIP3, C4MIP)**

2000

1950

300 ppm!

2100

2050

- **Given nearly identical human emissions, different models project dramatically different futures!**
- **Mostly depends on CO₂ fert & temp**

Even Worse in CMIP5!

- $\overline{\mathbf{r}}$ RCP 8.5 regrowth, nitrogen, fire) • More processes (land use,
	- CCTM and • Now more than 350 ppm spread in CO₂!
- **d) Temperature Change** • **For identical emissions, radiative forcing varies by almost 2 W m-2 (more than RCP 4.5 vs RCP 6)**
	- **Warming varies by 1.5** °**C (comparable to spread in physical climate)**
- Year **as clouds or people!** $\ddot{}$ • **Carbon cycle impacts climate uncertainty as much**

Past as Prelude

- **Models that underpredict** contemporary CO₂ also predict low CO₂ **in the future, and vice versa**
- **Evaluation of past carbon cycle simulations constrain future feedback**

Carbon Constraint CN CON 520 540 560 580 600 620 640 660 680 700 **Probability of** \mathbf{P}

- **Fiverord Feducion in Model opreddinizio** • **Fivefold reduction in model spread in 2100**
- \bullet No mechanism \ldots simple scalar multiplication of sinks \ddot{o} • **No mechanism … simple scalar multiplication of sinks**

Changing Hydrologic Cycle

- **Much more rainfall over tropical Pacific**
- **Amazon gets less rain (Walker Cell)**
- **Lower RH**
- **Less soil moisture**
- **Amazon dieback in some models** releases lots of CO₂

Mechanistic Constraints on Amazon Drought Response

1. Seasonal drought response 2. Space-for-time (Transect) 3. Interannual drought response 4. Severe persistent drought 5. Climatological drought

Seasonal Drought

- **Dry season CO₂ uptake, wet season CO₂ release**
- **A decade ago, most models got this badly wrong!**
- **Most now account for root uptake at depth**

Space-for-Time: Amazon Transect

Solar-Induced Fluorescence (W m-2 Sr-1 nm-1) Sept 2010 – Sept 2009 retrieved from GOME2 (Joanna Joiner, pers comm.) and simulated by SiB4

Persistent Drought

Figure 1.1 Panels prevent rainfall from reaching the forest floor in the rainfall exclusion experiment. View from above (top) and below (bottom) the panels. Photo courtesy Woods Hole Research Center.

- **Panels used to divert rainfall from forest floor.**
- **50-60% of rainfall was diverted from 2000-2004**

• **Used observations from tower (2001- 2003) to drive SiB, reduced rain by 60% during wet seasons**

5 Years of (Simulated) Hell

壺

鱼 Ϋ́ క్టీ 60°

క్టి

Photosynthesis (GPP)

្ងៃ

months

Latent Heat Flux

್ಯ

months

es
O z,

క్రి ee? ಕ್ತ 힞

흱

Sensible Heat Flux

Year 1: Normal Year 2-6 Drought Year 7: Normal

Impact noticeable from year 2, but drops in GPP & Resp cancel

Response stabilized from years 4-6

Recovery in year 7

Simulated Response to Persistent Drought

- **Model responds too strongly to imposed drought stress in first three years**
-

- **Position of Forest-Cerrado ecotone is a result of longterm adjustment to climate and disturbance**
- **Dynamic global vegetation models (DGVM) must simulate this boundary**
- **Evaluate physiology, allocation, competition, disturbance**
- **Most relevant timescales for climate change**

Climatological Drought Response

Leaf Area & Biomass: January 2008

- **Carbon-climate feedbacks are among the most uncertain emergent phenomena in Earth system models**
- **Contribution to spread in radiative forcing is as great as clouds, radiation, and aerosol, even comparable to unknown FF emissions**
- **Mechanistic constraints on carbon-climate feedbacks may reduce ESM spread more than any other near-term priority**
- **Example: Amazon drought response benchmarks**
	- **Seasonal drought and Amazon Transect (flux towers)**
	- **Severe Interannual Droughts (new observations of SIF)**
	- **Persistent Droughts (Throughfall Exclusion Experiments)**
	- **Climatological drought response (Dynamic Simulation of Forest-Cerrado Ecotone)**

Presentations

- **1. Denning -- Multiscale L/A work after CMMAP**
- **2. Ian Baker – Subgrid-scale variations of soil moisture**
- **3. Parker Kraus – Site simulations with SiB-SAM**
- **4. Jian Sun – Global land-atmosphere coupling in SPCAM**
- **5. Gordon Bonan – Multilayer Canopy Model**

Post-CMMAP Land-Atm Work

- DOE ASR: Effects of land-atmosphere heterogeneity on convective organization at ARM in SASL, MASL, MAML
- DOE ESS: Climate Feedback and Tropical Forests
- NASA: Soil moisture heterogeneity via "bins"
- NSF SSI: Flux Coupler "Lite" for CLM-SAM, CLM-WRF
- UCI: Mike Pritchard NSF CAREER award
- UCI: Gabe Kooperman PostDoc Fellowship
- NCAR: Multilayer Canopy Work