Robust effects of super-parameterization on simulated daily rainfall intensity statistics and their response to climate change

Gabriel Kooperman

University of California, Irvine Department of Earth System Science

Michael Pritchard, Melissa Burt, Mark Branson, and David Randall

Thanks to Cristiana Stan for simulation output.

CMMAP Winter Meeting – January 5, 2016

How will rainfall change in the future?

What changes are most important to society?

How well **Goods** capture

Photo: Federal Emergency Management Agency

Schultz [2014]

Impacts on society:

Flood and drought risks, and availability of fresh water.

Prediction requires:

Average rainfall, frequency, intensity, runoff, infiltration, intercept, throughflow, etc.

Droughts

Photo: California Department of Water Resources

Weiler [2014]

GCMs have major challenges capturing rainfall intensity in regions of organized convection

99.9th Percentile Precipitation Rate Change

• Water vapor is expected to increase 7% K⁻¹ globally, but regionally extreme rain in the tropics is expected to increase more due to changes in moisture convergence.

How will rainfall change in the future?

What changes are most important to society?

Impacts on society:

Flood and drought risks, and availability of fresh water

Prediction requires:

Average rainfall, frequency, intensity, runoff, infiltration, intercept, throughflow, etc.

How well do GCMs capture changes in these statistics?

Does resolving convection in a super-parameterized GCM better constrain intensity? Baseline rain intensity and future changes in the tropics are uncertain and weak in GCMs, and don't improve with resolution.

Super-parameterization resolves both smalland large-scale processes simultaneously

CAM Grid: I° ~ 100km

Super-Parameterized CAM

• Idealized 2D cloud resolving models are embedded in each grid column of a GCM to replace conventional parameterizations and explicitly represent sub-grid convection.

SPCAM rain intensity agrees with TRMM over the tropics without sensitivity to resolution

SPCAM

Annual Rainfall Distribution

Amount (mm day^{-I})

GPCP

CAM

TRMM

• SPCAM, TRMM, and GPCP agree over land, but not CAM.

(I°) CAM

SPCAM's intensity response is fundamentally different, with a smooth shift across all rates

(mm day⁻¹

Amount

Annual Distribution Change

- Distributions broaden and shift right toward heavier rates more in SPCAM than CAM.
- The median does not shift in CAM, only the most extreme rainfall increases separately.

Present-Day Climate-Change CAM SPCAM CAM SPCAM

Rain intensity is projected to increase almost everywhere, most significantly in the tropics

Annual 99th Percentile Precipitation Rate

CAM 2

Resolution Models

• Present-day rain in the warm pool and monsoon regions is more intense in SPCAM.

Moderate rates that generate most rain don't shift in CAM, but are more intense in SPCAM

Annual Precipitation Amount Median

• Even 1° resolution CAM doesn't capture the median intensity of SPCAM and TRMM.

How will rainfall change in the future?

- SPCAM predicts a consistent shift in the distributions for all rates with a:
 - more intense amount median in tropical wave and MJO regions,
 - increase in extreme rain rates,
 - and intensification of ITCZ rain.
- CAM is sensitive to resolution and cannot capture the median response.
- A small median shift is visible across most parameterized CMIP5 models.