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Overview:
• Improved	quantitative	and	qualitative	understanding	of	the	
“buoyancy	force.”

• We	will	define	the	“absolute	buoyancy	force”	and	“relative	buoyancy	
force.”		How	do	these	forces	compare?	What	are	the	underlying	
assumptions	involved	in	their	derivations?

• Many	current	qualitative	and	quantitative	analysis	frameworks	are	
based	on	the	absolute	buoyancy	force.		It	is	argued	here	that	they	
should	be	based	on	the	relative	buoyancy	force.



What	force	causes	air	to	rise	
in	deep	moist	updrafts?



Buoyancy:
The	Theory	of	Archimedes

“Any	object,	wholly	or	partially	immersed	
in	a	fluid,	is	buoyed	up	by	a	force	equal	to	
the	weight	of	the	fluid	displaced	by	the	
object.”

-Archimedes	of	Syracuse	(c.	250	BC)
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gradient	force

Buoyancy
We’ll	 call	this	“absolute	

buoyancy,”	since	its	sign	and	
magnitude	are	dependent	
on	a	universal	base	state



Parcel	Theory
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Neglecting	the	vertical	pressure	
gradient	force:	how	valid	 is	this	

assumption?
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Parcel	Theory
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Which	environment	“acts”	upon	an	
updraft	once	it	has	formed?

𝜃=>?@:A 𝜃:;< 𝜃:;<



𝜃=>?@:A 𝜃:;<? 𝜃:;<?

Updraft	in	horizontally	and	temporally
heterogeneous	environment

𝜃:;<? 𝜃:;<?



What	do	we	choose	as	the	
base	state?

“Do parcels within the WER <referring to the core of an updraft>
respond to their immediate neighbors with similar properties or do 
they respond to more distant parcels within the cloud that have 
distinctly different properties? Or do they respond to parcels 
outside the cloud?”

-Doswell and Markowski (2004)



Horizontal	Maps	of	CAPE

4-27-11	2000	UTC



Horizontal	Maps	of	CAPE

4-27-11	2100	UTC



Horizontal	Maps	of	CAPE

4-27-11	2200	UTC



Horizontal	Maps	of	CAPE

4-27-11	2300	UTC



Horizontal	Maps	of	CAPE

4-28-11	0000	UTC



What	do	we	choose	as	the	
base	state?

𝜃 = 𝜃′ 𝑥, 𝑦, 𝑧, 𝑡 + 𝜃2 𝑧 → 𝜃 = 𝜃′ 𝑥, 𝑦, 𝑧, 𝑡 + 𝜃2 𝑥, 𝑦, 𝑧, 𝑡



What	do	we	choose	as	the	
base	state?

• Base	state	re-defined	for	every	horizontal	
grid	location

• This	is	inconsistent	with	the	original	base	
state	definition	(and	the	derivation	of	
absolute	buoyancy),	where	the	base	state	is	
horizontally	and	temporally	invariant



Lingering	questions
1. Can	we	neglect	the	vertical	pressure	

gradient	force?
2. Horizontal	maps	of	CAPE	are	useful	in	

forecasting	and	research.		How	is	this	so,	if	
the	assumptions	involved	in	their	
computation	are	insufficiently	justified?



Can	we	neglect	the	vertical	pressure	gradient	
force?



Downward	oriented	
perturbation	pressure	force	
partially	offsets	upward	

oriented	absolute	
buoyancy	force

Theta	perturbation	(black	
contours)

perturbation pressure field	
(color	shading)
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Figure 3. As in Fig. 2 except for the RICO sounding and updraft radius of a) 1, b) 5, 1154 

and c) 10 km. Contour interval for thermal buoyancy (black contour lines) is 0.01 m 1155 

s-2. 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

From	Morrison	(2015b)
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Figure 5. Theoretical (red) and numerical (blue) calculations of vertical velocity at 1169 
the LMB, wM, as a function of updraft radius, R, for the six thermodynamic soundings 1170 
and COS buoyancy distribution. Solid and dashed lines indicate calculations for 3D 1171 
and 2D, respectively. The thermodynamic maximum w at the LMB given by 1172 

12CAPE  is shown by the horizontal dotted line. 1173 
 1174 

 1175 
 1176 
 1177 
 1178 
 1179 
 1180 

As	width	of	updraft	
increases,	the	magnitude	

of	“pressure	offset”	
increases

w	(m/s)

radius	(km)

Parcel	theory



1990) and 0.2–0.3K during TOGA COARE (Wei
et al. 1998).

b. Momentum budget

Before we attempt to diagnose the momentum bud-
get, it is useful to first look at the cloud-top trajectories.
For each cloud sequence, the time series of cloud-top
displacement is plotted as a thin black line in Fig. 6.
When the streamfunction mask is bad, the trajectory is
plotted with the cloud-top heights at those times
omitted; this choice is made to be as consistent as
possible with the parcel trajectories described below,
which can only use data from good masks. Although
they are difficult to see on this busy plot, the trajecto-
ries resemble a splay of straight lines. The average of all
of these time series is shown as the thick black line,
which is plotted up to the time when the number of thin
black lines drops below 5. It, too, is a straight line, in-
dicating the absence of any significant acceleration or
deceleration of these thermals. Recall that none of the
conditions used to select cloud tops had anything to do
with the stage of the cloud’s life cycle; therefore, the
linearity of these trajectories is truly remarkable. This
linearity strongly suggests a balance of forces, which
would cause the thermals to ascend with a terminal
velocity.
To check this balance, we calculate theoretical time

series of cloud-top heights using the thermodynamic
variables inside the thermal masks. In particular, we
integrate Eq. (3) twice to give height, but using only the

second term on the right-hand side (buoyancy only; blue
lines), or only the first term on the right-hand side
(pressure perturbation gradient acceleration only; red
lines), or the sum of the first two terms on the right-hand
side (buoyancy plus pressure perturbation gradient ac-
celeration; purple lines). The thin blue, red, and purple
lines show the trajectories calculated for individual
cloud sequences. The thick blue, red, and purple lines
show the respective means up until when the number of
thin lines drops below 5. Clearly, buoyancy alone (blue
lines) would cause the thermals to accelerate upward
much more quickly than observed. Similarly, the pres-
sure perturbation alone (red lines) would cause the
thermals to rapidly decelerate and descend, which is in
stark contrast to the observed ascent. But, by combining
these two terms (purple lines), we closely replicate the
observed ascent. This demonstrates that the dominant
balance in the momentum budget is between buoyancy
and drag; cloud thermals are sticky. Note that this suc-
cess is achieved despite our neglect of the entrainment–
detrainment term. This agrees with previous findings
that the entrainment drag is weak (Dawe and Austin
2011; de Roode et al. 2012; Sherwood et al. 2013).
To demonstrate this balance in another way, Fig. 7

plots the thermal-mean pressure perturbation gradient

FIG. 5. A scatterplot of DTy vs DT for the 1224 thermals with
good masks. The marginal histograms show the distributions of
(top) DT and (right) DTy .

FIG. 6. Actual and theoretical cloud-top trajectories. The thin
black lines are the time series of actual cloud-top heights for in-
dividual cloud sequences. The thin blue, red, and purple lines
show the theoretical cloud-top trajectories using only terms b,
2(1/r)›p0/›z, and b2 (1/r)›p0/›z on the right-hand side of Eq. (3),
respectively. The thick black, blue, red, and purple lines are the
averages of the respective thin lines.
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From	Romps	and	Charn (2015)	– the	“sticky	hypothesis”

Rate	of	rise	of	a	plume	is	
best	explained	by	a	balance	
between	buoyancy	and	the	
vertical	pressure	gradient	

force

Parcel	theory	assumption	
over-predicts	rate	of	plume	

rise	
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How	do	we	
understand	this	

term?
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Vertical	Pressure	gradient	Force
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Wait…	The	absolute	buoyancy	term	drops	
out?		Seems	like	we	really can’t	neglect	the	
vertical	pressure	gradient	force



Nonhydrostatic pressure	field
𝑑𝐕
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Vertical	gradient	in	pnh
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“dynamic”	pressure	
field

“static”	pressure	
field
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“dynamic”	pressure	forcing	
(ignoring	for	time	being)

“static”	pressure
forcing

𝑑𝑤
𝑑𝑡

=
1
𝜌2
𝐿gh

𝜕
𝜕𝑧

𝛻 _ 𝜌2 𝐕 _ 𝛻𝐕 +
1
𝜌2
𝐿gh 𝜌2𝛻d6 𝑔

𝜃′
𝜃2

	

𝑑𝑤
𝑑𝑡

≈
1
𝜌2
𝐿gh 𝜌2𝛻d6 𝑔

𝜃′
𝜃2

	 This	term	looks	
“buoyancy-like”

We’ll	call	the	RHS	the	“relative	buoyancy	force.”		It	isn’t	quite	clear	that	it’s	
embodies	Archimedes'	principle	yet…	



Finite	difference	grid	centered	on	2-D	
updraft
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Simplified	expression

We’ll	 call	this	a	
“scaling	term”	(e.g.	
Weisman	et	al.	1997;	
Morrison	2015a).

We’ll	 call	this	a	
“relative	temperature	

difference	 term”	
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𝜃2
Scaling	term

Acceleration	at	center	of	
updraft	falls	off	quickly	

with	Lx >	Lz

Wider	updrafts	are	weaker	
than	narrower	updrafts	
with	the	same	absolute	

buoyancy.		In	other	words,	
two	updrafts	with	

different	shapes	can	have	
the	same	absolute	

buoyancy,	but	different	
relative	buoyancy

See	Morrison	2015a,b



𝑑𝑤
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𝜃2 relative	
temperature	

difference	term	

𝛿𝜃. is	different	than	𝜃’	in	that	it	is	the	temperature	
difference	between	the	center	of	an	updraft	and	its	
immediate	surroundings,	rather	than	an	arbitrary	base	state



𝜃=>?@:A 𝜃:;<

We	now	have	an	unambiguous	
“background	environment”
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If	we	assume	that	the	scaling	term	applies	evenly	through	
the	depth	of	an	updraft,	we	can	estimate	the	profile	of	
vertical	velocity	through	the	depth	of	an	updraft
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6 B
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We	can	also	derive	
new	formulas	for	
CIN	and	CAPE



We	will	further	discuss	the	potential	
usefulness	of	the	expressions	for	w,	CIN,	
and	CAPE	a	bit	later



What	happens	when	an	updraft	becomes	
slanted?

(most	updrafts	in	the	mid	latitudes	are	
somewhat	slanted,	due	to	vertical	wind	
shear)



Slanted	updraft

∅
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6
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FIG. 2. Depiction of three different configurations of buoyancy, with associated pressure perturbations and ac-
celerations. (left) Buoyancy (m s22, shaded as shown) and buoyant pressure perturbation, p9B (contoured every 10 Pa,
with heavy 0 contour). (right) Net vertical acceleration (m s22, shaded as shown, with maximal value reported to the
left) and total acceleration vectors (m s22, scaled as shown). (from top to bottom) System that is perfectly upright,
system with moderate slope (10:15), and system with shallow slope (10:40). In all cases the dynamic part of the
pressure perturbation is neglected in computing the accelerations. Note: the aspect ratio is not 1:1 (the plots are
horizontally expanded).
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Answer	to	our	question:	We	can’t	neglect	
the	pressure	gradient	force	for	a	
comprehensive	understanding	of	
convective	updrafts	



Updraft	strength	(e.g.	max	dw/dt,	w)	
depends	on	the	updraft’s:

Aspect	ratio:	taller	skinnier	updrafts	are	
stronger	(neglecting	entrainment)

Slant:	more	slant,	weaker	updraft

Surroundings.		Put	cold	(warm)	air	next	
to	an	updraft,	you	make	it	more	(less)	
buoyant.

These	effects	are	neglected	by	parcel	theory/absolute	buoyancy	
frameworks



Now	lets	compare	the	theoretical	
expressions	based	on	relative	buoyancy	to	
some	characteristics	of	simulated	updrafts



• CM	1	simulation
• 2-D
• 125	m	grid	spacing
• Initialized	with	low-level	cold	pool
• Wind	profile	outside	of	cold	pool	

favorable	for	lifting	along	cold	pool	
edge

• 18.5	m/s	low-level	shear,	c=26	m/s
• WK88	sounding
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HISHR	CM1	simulation
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Lx=1.25	and	Lz=6	are	reasonable	parameter	values	from	
the	CM1	simulation.		This	yields	a	scaling	value	of	.96…	
so	the	scaling	parameter	minimally	affects	CAPE/CIN	
values.

Returning	to	our	new	CAPE	and	CIN	
expressions



𝐶𝐼𝑁?:A = 𝑔B
𝛿𝜃.
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So	how	do	these	expressions	differ	from	traditional	CAPE	
and	CIN?

𝛿𝜃. ≡ 𝜃. 𝑥, 𝑧, 𝑡 − 𝜃n ′ 𝑥, 𝑧, 𝑡

𝜃n′ 𝑥, 𝑧, 𝑡 ≡
1
2
𝜃. 𝑥 + 𝐿l/2, 𝑧, 𝑡 + 𝜃. 𝑥 − 𝐿l/2, 𝑧, 𝑡

If	you	put	anomalously	cool	or	warm	air	next	to	an	air	parcel,	
you	change	𝜃n.,	which	in	turn	affects	the	parcel’s	relative	
buoyancy,	and	it’s	CINrel and	CAPErel



Application:	Lifting	along	outflow	
boundaries

This	area,	though	it	has	
neutral	(zero)	𝜃’	has	
positive	relative	
buoyancy	and	

experiences	 an	upward	
force		

COLD	POOL
CIN	vanishes	here	in	
many	situations
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In	the	mid-latitudes,	CIN	often	increases	for	parcels	near	
the	surface	at	night

It	has	been	argued	that	“mechanical	lifting”	(e.g.	
dynamic	pressure	force)	is	needed	to	overcome	this	CIN	
and	lift	these	parcels	into	updrafts	

I	argue	here	that	as	the	flow	approaches	a	cold	pool,	CIN	
vanishes	in	many	instances.		There	any	“resistance”	to	
upward	motion.



Overall	Conclusions

For	a	complete	conceptual	picture	of	updraft	dynamics,	
theory	must	be	based	on	relative	buoyancy

Relative	buoyancy	(which	includes	pressure	effects) is	
probably	a	better	interpretation	of	Archimedes'	theory,	in	
that	buoyancy	is	a	response	of	parcels	to	local	properties	
of	a	fluid,	rather	than	properties	of	an	arbitrary	base	state

CINrel may	be	useful	in	storm	scale	processes	analysis,	in	
that	it	is	a	more	correct	representation	of	a	parcel’s	
inhibition	to	upward	motion	that	traditional	CIN



ACC	DYNAM ACC	BUOY

𝑑𝑤
𝑑𝑡

=
1
𝜌2
𝐿gh

𝜕
𝜕𝑧

𝛻 _ 𝜌2 𝐕 _ 𝛻𝐕 +
1
𝜌2
𝐿gh 𝜌2𝛻d6 𝑔

𝜃′
𝜃2
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