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Icosahedral (hexagonal-pentagonal) grid

a numerical integration, in which the grid points on the
raw grid are connected to each other with springs. Non-
uniform horizontal resolution can be achieved by allow-
ing the ‘‘spring constant’’ to vary in space, and this is
a major motivation for the approach. Here we consider
only spatially uniform spring constants.
We repeated the calculations described by Tomita

et al. (2001) and Tomita et al. (2002) with the two values
of the tuning parameter, k5 0:8 and k 5 1.1, which cor-
respond to the tuning parameter b in the original pa-
pers. The notation is changed to avoid confusion with b
used in section 3c. Larger values of k give more ho-
mogeneous distributions of grid points. It appears that
there is a practical upper limit for k; our algorithm was
stable only up to k 5 1.1, while the highest value of k
used by Tomita et al. (2001, 2002) was 1.2. We stopped
the integrations when the maximum displacement of
grid points between the time steps becomes less than or
equal to 0:33 1024 m. After the spring grid points were

located, Tomita and colleagues selected the centroids
of the triangular regions as the cell corners. In our
implementation, on the other hand, the cell corners
were obtained by using the Voronoi principle, as for the
tweaked grid.
Table 2 shows some basic properties of the spring grid,

obtained using k5 1.1 and raw grids up toG12. Through
the spring dynamics, the ratio of the smallest to the
largest grid sizes (fifth column) and the ratio of the
shortest to the longest grid distances (fourth column) do
not change significantly. Although not shown here, the
cell sizes are distributed much more smoothly on the
spring grid than on the unoptimized and tweaked grids,
which are shown in Table 1. There is an improvement in
the maximum of l/d (last column) compared to the raw
grid although the improvement is not as great as that
obtained by tweaking.
Figure 10 shows L2- and L‘-norm errors for each

operator on the spring grid, obtained with k 5 1.1 and
k 5 0.8. We apply the spring dynamics optimization up
to G10, which is sufficient for a comparison of the results
with those from the raw and tweaked grids. Truncation
errors are reduced overall, compared to the raw grid,
with both k 5 1.1 and k 5 0.8. The L2-error (or mean
error) convergence rate of the divergence operator is
almost second order, and is between the first and second
orders for the Laplacian and Jacobian operators. There
is a small improvement in the mean error for k 5 1.1,
relative to k 5 0.8. The L‘-error (or maximum error)
convergence rate of the three operators is less than first
order, but it is still quite a bit better than the conver-
gence rate on the raw grid. Compared to k5 0.8, the use
of k5 1.1 appearsmore effectively reduce themaximum
errors and the convergence rates, although it has little
effect on the mean error. The convergence rates are

FIG. 7. An illustration of the tweaking algorithm on a couple of
neighboring cells. The cell centers (solid black circles) are moved
to their new positions (gray circles) to satisfy l 5 0. The cell wall
already bisects the line connecting the cell centers at a right angle
because of the use of Voronoi corners.

TABLE 1. Some properties of the tweaked and raw grids. The raw grid properties are shown in the parentheses. Averaged grid distance is
the arithmetic average of the maximum and minimum of grid distances.

Grid
No. of grid
points N

Avg grid
distance ‘ (km)

Ratio of shortest to
longest grid distance (%)

Ratio of smallest to
largest grid size (%) Max of l/d (%) Avg l/d (%)

G0 12 6699.1 100 (100) 100 (100) 0.0 (0.0) 0.0 (0.0)
G1 42 3709.8 88.1 (88.1) 88.5 (88.5) 9.9714 (9.9714) 5.0061 (5.0061)
G2 162 1908.8 82.0 (84.8) 91.6 (84.2) 5.8020 (9.9718) 3.6172 (3.6700)
G3 642 961.4 79.8 (83.9) 94.2 (76.3) 3.0933 (9.6888) 2.0437 (2.1255)
G4 2562 481.6 79.0 (83.7) 94.8 (74.1) 1.6020 (9.6758) 1.0699 (1.1363)
G5 10 242 240.9 78.7 (83.6) 95.0 (73.6) 0.8168 (9.6726) 0.5447 (0.5867)
G6 40 962 120.4 78.6 (83.6) 95.2 (73.4) 0.4128 (9.6718) 0.2743 (0.2980)
G7 163 842 60.2 78.6 (83.6) 95.2 (73.4) 0.2075 (9.6714) 0.1375 (0.1501)
G8 655 362 30.1 78.6 (83.6) 95.3 (73.4) 0.1041 (9.6715) 0.0688 (0.0753)
G9 2 621 442 15.0 78.6 (83.6) 95.3 (73.4) 0.0522 (9.6715) 0.0344 (0.0377)
G10 10 485 762 7.53 78.6 (83.6) 95.3 (73.4) 0.0260 (9.6715) 0.0172 (0.0189)
G11 41 943 042 3.76 78.6 (83.6) 95.3 (73.4) 0.0131 (9.6715) 0.0086 (0.0094)
G12 167 772 162 1.88 78.6 (83.6) 95.3 (73.4) 0.0065 (9.6715) 0.0043 (0.0047)
G13 671 088 642 0.94 78.6 (83.6) 95.3 (73.4) 0.0056 (9.6715) 0.0021 (0.0023)
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Non-hydrostatic regime

We built a non-hydrostatic version of our geodesic model by using 
the Unified System of equations, which gives accurate solutions for a 
wide range of scales, and filters vertically propagating sound waves.



Fully compressible system Unified System

∂ ρqs +δρ( )
∂t

= −∇H ⋅ ρqs +δρ( )v⎡⎣ ⎤⎦ −
∂ ρqs +δρ( )w⎡⎣ ⎤⎦

∂z

Dθ
Dt

= Q
cpπ

Dv
Dt

+ fk × v = −cpθ∇H π qs +δπ( ) + Fv

Dw
Dt

= −cpθ
∂δπ
∂z

+Fw

Con$nuity	equa$on:

Thermodynamic	equa$on:

Horizontal	momentum	equa$on:

Ver$cal	momentum	equa$on:

π ≡ π qs +δπ
ρ ≡ ρqs +δρ
T ≡ Tqs +δT

p ≡ pqs +δ p

∂ρqs

∂t
= −∇H ⋅ ρqsv( )− ∂ ρqsw( )

∂z

Dθ
Dt

= Q
cpπ

Dv
Dt

+ fk × v = −cpθ∇H π qs +δπ( ) + Fv

Con$nuity	equa$on:

Thermodynamic	equa$on:

Horizontal	momentum	equa$on:

Ver$cal	momentum	equa$on:

 ρqs ≫ δρ is	assumed

Dw
Dt

= −cpθ
∂δπ
∂z

+Fw

π ≡ π qs +δπ
ρ ≡ ρqs +δρ
T ≡ Tqs +δT

p ≡ pqs +δ p

Like the anelastic system, the Unified System includes 
a 3D elliptic equation, e.g., for the pressure.

The Unified System



Strengths & Weaknesses of the  
Unified System 

Filters vertically propagating sound waves

Does not need a basic or reference or mean state

Is as accurate as the fully compressible system for non-
acoustic modes

Is easy to implement into an existing quasi-static model

Can easily be “switched” to the quasi-static system

Conserves energy

Strengths:

Requires solution of a three-dimensional elliptic system
Weaknesses:



Predicting the winds with the 
Unified System

With the Unified System,  there are only two prognostic  degrees of 
freedom in the wind field.

For example, if the horizontal wind vector is predicted, then the vertical 
velocity can be diagnosed from the continuity equation.

We built a Unified System model that predicts the curl and divergence 
of the horizontal wind vector,  following the “Z grid” approach.





Too many sheep, not enough dogs

From this point of view, the E grid is really  only compatible with quadrilateral meshes. It  is 
possible, however, to create an E grid by  combining a hexagonal C grid with a triangular C grid. 
The resulting grid suffers from computational modes.

The Z-grid represents the velocity  in terms of the vorticity  and divergence, so no velocity 
components are defined.

Table 8.2 lists the numbers of corners and edges per face, on the triangular, square, and 

hexagonal meshes. Table 8.3 lists the number of prognostic degrees of freedom in the wind field 
per mass point, for the generalized A-E and Z grids, on triangular, square, and hexagonal meshes. 
From a physical point of view, there should be two prognostic degrees of freedom in the wind 

field per mass point.  The A-grid and Z-grid achieve this ideal on all three meshes. All of the 
other combinations fall short. 

The table suggests that, if C-staggering is desired, then a square (or quadrilateral) mesh 
should be used. If squares are not used, then Z-staggering is best, but Z-staggering works fine for 
squares, too.

Triangles Squares Hexagons

Corners per face

Edges per face

1/2 1 2

3/2 2 3

Table 8.2: The numbers of corners and edges per face, on the triangular, square, and hexagonal meshes.

Grid Triangles Squares Hexagons

A 2 2 2

B 1 2 4

C 3/2 2 3

D 3/2 2 3

E Does not exist 2 Does not exist

Z 2 2 2

Table 8.3: The number of prognostic degrees of freedom in the horizontal wind field, per mass point, on 
grids A-E and Z, and for triangular, square, and hexagonal meshes. For the Z-grid, the vorticity and 
divergence carry the information about the wind field.
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An Introduction to Numerical Modeling of the Atmosphere

The right 
answer is 2.

others lie across cell vertices. As a result, finite-difference
operators constructed on these grids tend to use ‘‘wall
neighbors’’ and ‘‘vertex neighbors’’ in different ways.
For example, the simplest second-order finite-difference
approximation to the gradient, on a square grid, uses
only wall neighbors; vertex neighbors are ignored. It is
certainly possible to construct finite-difference opera-
tors on square grids (and triangular grids) in which in-
formation from all neighboring cells is used [e.g., the
Arakawa Jacobian, as discussed by Arakawa (1966)],
but the operators can be cumbersome.
Hexagonal grids, in contrast, have the property that

all neighbors of a given cell lay across cell walls; there
are no vertex neighbors. In this sense, hexagonal grids
are quasi-isotropic. As a result, the most natural finite-
difference operators on hexagonal grids treat all neigh-
boring cells in the same way; the discrete operators are
as symmetrical and isotropic as possible.
On the other hand, both square grids and triangular

grids can be nested, but hexagonal grids cannot because
it is not possible to construct large hexagons from smaller
hexagons. This can be viewed as a disadvantage of hex-
agonal grids. A second disadvantage is that, for a given
number of grid cells per unit area, the distance between
hexagon centers is slightly larger than the distances be-
tween the centers of triangles or squares.
With triangular and hexagonal grids, there can be an

imbalance in the number of centers, walls, and corners.
In particular, hexagonal grids have twice as many cell
corners as cell centers and 3 times as many cell walls as
cell centers. If the variables of a model are distributed
over the centers, walls, and corners, computational modes
can easily occur.
This mismatch in the degrees of freedom can be avoi-

ded by using ‘‘hexagonal A’’ staggering, in which the
mass and the horizontal wind vector are both predicted
at cell centers, but this again permits computational

modes, due to averaging in the mass-convergence term
of the continuity equation and the pressure-gradient
force term of the momentum equation. NICAM (Satoh
et al. 2008) and FIM (Lee and MacDonald, 2009) use
grids like this. In global cloud resolving simulations with
NICAM, it is observed that there are a high number of
single-gridcell clouds, which is consistent with the exis-
tence of the computational mode associated with the
A-grid (H. Muira 2010, personal communication).
With hexagonal C staggering, in which the mass is

defined at cell centers and the normal components of the
winds are predicted on the cell walls, the horizontal wind
has three degrees of freedom for each degree of freedom
in the mass; this permits a computational mode in the
wind field. Although there are ways to minimize the am-
plitudes and deleterious effects of computational modes
(see Thuburn 2008), they can be avoided altogether by
the use of the ‘‘Z staggering.’’
With the Z staggering, in which the mass, the vertical

component of the vorticity, and the horizontal divergence
are defined at cell centers without staggering, there is no
room for computationalmodes (Randall 1994).Additional
advantages of the Z staggering are that it gives a good
simulation of geostrophic adjustment (Randall 1994), and
that direct prediction of the vorticity facilitates the use of
an accurate form of the discrete vorticity equation.
We choose an IHP grid because of its good homoge-

neity and isotropy, and we are then led to choose Z
staggering because it avoids computational modes while
giving a good simulation of geostrophic adjustment and
enabling an accurate form of the vorticity equation. The
price we pay for using Z staggering is that we must
solve a pair of Poisson equations on each time step. The
method that we use for this is discussed in section 5. We
use the Z-grid staggering in the hydrostatic and non-
hydrostatic models to be discussed in the forthcoming
papers mentioned above.

FIG. 2. (a) Cartesian, (b) hexagonal, and (c) triangular grids on a plane.
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Z Grid

The Z grid has no computational modes.

Predict the curl and divergence of the horizontal wind vector. 

ω z

ψ χ

D
θ w

ω z

ψ χ

D
θ
w

ω z

ψ χ

D
θ

w

ω z

ψ χ
D

θ w
ω z

ψ χ θ w
D

ψ χ θ wψ χ θ w
ω z D ω z D

υnorυ tan

v ≡ vψ + v χ

vψ ≡ k ×∇Hψ

v χ ≡ ∇Hχ

ω z ≡ k ⋅∇H × v

D ≡ ∇H ⋅v

Diagnose the winds

∇H
2ψ =ω z

∇H
2 χ = D

Elliptic equations



Strengths & Weaknesses of the Z grid

No computational modes

Excellent dispersion properties for inertia-gravity waves

Direct prediction of the vertical component of the vorticity

Predicts pseudo-scalars, rather than vectors

Requires solution of a pair of two-dimensional elliptic 
equations at each level on each time step

Uses the ugly, hard-to-interpret divergence equation

Strengths:

Weaknesses:



Quasi-hydrostatic run

DCMIP test case 3.1

Nonhydrostatic run

3000 s

3000 s

3600 s

3600 s

G7 (~2.5 km),  32 L (dz=500 m),  a=300 km

Unified, Z grid, small planet



∇H ⋅ ρqscpθ∇Hδπ( )+ ∂
∂z

ρqscpθ
∂δπ
∂z

⎛

⎝
⎜

⎞

⎠
⎟= forcing

∂δπ
∂z

⎛
⎝⎜

⎞
⎠⎟ S

= ∂δπ
∂z

⎛
⎝⎜

⎞
⎠⎟ T

= 0 Neumann boundary conditions

Elliptic equation for the pressure

Convergence is poor with a full size Earth.

Convergence is good with the Neumann boundary conditions in 
simulations with a miniature Earth.

There is a way to escape the Neumann boundary conditions…



Vorticity across scales

Large-scale motions are 
controlled by the vertical 
component of the vorticity.

Small-scale motions are 
controlled by the horizontal 
vorticity vector.



A distinguished history

On the numerical simulation of buoyant convection 

By D. K. LILLY, Ueneral Circulation Research Laboratory, 
U.S. Weather Bureau, Wmhington 

(Manuscript received October 21, 1961, revised version March 6, 1962) 

ABSTRACT 

The two-dimensional turbulent vortex generated by release of buoyant fluid from an 
instantaneous thermal line source haa been simulated by machine numerical solution 
of a complete set of Eulerian gas equations. The equations included turbulent eddy 
exchange tern, similar to those used by Smagorinsky, which made possible the 
generation of computationally stable solutions qualitatively and quantitatively 
resembling the convective “thermals” studied and described by Scorer and Richards. 
The reaults of a number of numerical experiments, performed with varying computa- 
tional approximations, lead to conclusions as to the importance of vctrious source8 of 
numerical errora and the validity of the eddy exchange formulation. The formulation 
leeds to qualitatively good results with the resolution provided by about 1600 grid 
points, but it has not yet been possible to exhibit the shape-preserving stage assumed 
in theoretical treatments and found approximately by laboratory experiments. This 
is probably due in large part to the neglect of the effects of eddies in the third dimension. 

1. Goals and general procedure 
In this article we present some results of a 

theoretical investigation of turbulent thermal 
convection in a compressible fluid (dry air) by 
means of direct numerical time-integration of 
a complete set of dynamic equations. Before 
discussing in detail the methods and results of 
this inveatigation we will briefly discuss the 
position of this type of study in relation to 
that of more conventional analytic methods. 
Due to the sequential and initially uncertain 
nature of the results of this type of investiga- 
tion we conveniently call it a numerical 
experiment. One should always keep in mind, 
however, that (barring code errors) the results 
are purely logical consequences of the various 
theoretical approximations and simplifications 
initially assumed, difficult though it may be 
to  trace through the effects of a particular 
assumption. 

The application of numerical experimenta- 
tion to physical theory is generally justifiable 
only when more concise analytic methods have 
been unproductive or have reached apparent 
limits of usefulness, but these conditions seem 

to prevail in the field of turbulent fluid mechan- 
ics. Although it would be possible to formulate 
and numerically integrate sets of differential 
equations, initial and boundary values, appro- 
priate to a broad range of fluid dynamics 
phenomena, there would be little merit in going 
to this considerable labor for cases where 
general analytic solutions are available. This 
occurs under various conditions but most 
generally when the ratio of viscous and diffusive 
terms to  those connected with inertial, advec- 
tive, and gravitational forces is large, i.e. when 
the Reynolds and Rayleigh numbers are small. 
For thermal convective motions the linear 
solutions have some qualitative significance 
even for moderately large Rayleigh numbers, 
several times the critical value for onset of 
unstable motion. In  addition there are some 
non-linear steady-state analytic solutions, or 
asymptotic approaches to solutions, available 
for this range (MALKUS t VERONIS, 1958; KUO, 
1960). Thus it is doubtful whether in that 
regime a numerical initial-value approach would 
be justified, except perhaps for specific en- 
gineering purposes. When the scale and energy 

Tellus XIV (1962), 2 



Vector Vorticity Model (VVM)

where ()
xy

represents the horizontal average. Using
these horizontally uniform and nonuniform parts, the
horizontal velocities at z ! zT are given as

uT ! uxy " u! " u", #T ! #xy " #! " #". #20$

To update the horizontal velocity components at an
arbitrary height z, we use (6) rewritten as

$u
$z

!
$w
$x

" % and
$#

$z
!

$w
$y

% &. #21$

Integrating (21) with respect to z downward, we obtain

u ! !
zT

z "$w
$x

" %# dz " uT#x, y, t$ and

# ! !
zT

z "$w
$y

% &# dz " #T#x, y, t$. #22$

The model described above is quite different from
that used in Thunis and Clappier (2000). In their model,
a pair of two-dimensional elliptic equations for the
streamfunction are iteratively solved. In our model, a
single three-dimensional elliptic equation for the verti-
cal velocity is solved instead. The use of this equation is
one of the unique aspects of the model described in this
paper. Figure 1 presents a flowchart of the logical struc-
ture of the model dynamics. The major points here are
satisfying the nondivergence of the three-dimensional
vorticity given by (7) and the way in which the velocity
field is updated from the predicted vorticity field.

The thermodynamic equation in the model is given
by

d'

dt
! "$'

$t #MP
" "$'

$t #RAD
" "$'

$t #TUR
" "$'

$t #LS
,

#23$

FIG. 1. Flowchart of the model structure for predicting dynamical variables.
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Predict the  
horizontal vorticity vector  

on a C grid

Jung & Arakawa, 2008

∇H ⋅ωH +
∂ω z

∂z
= 0Three-dimensional vorticity vector is nondivergent :

ωH = ∂VH
∂z

−∇Hw



∇H
2w + ∂

∂z
1
ρqs

∂
∂z

ρqsw( )⎡

⎣
⎢

⎤

⎦
⎥ = −Γ ≡ k ⋅∇H × ωH

In the VVM, the three-dimensional elliptic equation determines the vertical 
velocity, rather than the pressure:

wS = wT = 0 Dirichlet boundary conditions

Elliptic equation for the vertical velocity

The “forcing” on the right-hand side is the curl of the horizontal vorticity.



Reconstructing the wind field

ωH = ∂VH
∂z

−∇Hw

We have now solved for w , and we have predicted  ωH . Then we can use 

to determine VH , if we have a starting value of VH at the model’s top.

For this purpose, we use the method of the “old” Z grid model, 
which is to diagnose VH from  ω z and the divergence of the horizontal wind.

We predict ω z w = 0 to determine 

∂
∂z

ρqsw( ) Then the divergence can be obtained from the continuity equation.. 

, and use the upper boundary condition 



We built a geodesic  VVM that solves a 3D elliptic equation for the vertical velocity.

But the VVM is a C grid model, and C staggering leads to computational modes 
on a geodesic grid, so we made one more change…



Curl Curl

∇H ⋅VH

Γ ≡ k ⋅ ∇H ×ωH( )
∇H ⋅ωH

Vorticity & Divergence Curl Curl

ωz ≡ k ⋅ ∇H ×VH( )

∇H ⋅ωH = −
∂ωz

∂z
∇3 ⋅ω3 = 0Since we can write .

So, what we actually predict are ωz .Γ ≡ k ⋅ ∇H ×ωH( )and



What is the curl of the vorticity?
The vorticity has a curl when the vortex lines make loops or rings, analogous to the 
circular structures sometimes formed by the wind field when the velocity has a curl.

Vortex loops or rings surround jets, plumes and thermals.

The horizontal vorticity also has a curl in a field of cloud streets or “rolls,” because in 
that situation the horizontal vorticity changes sign in the direction perpendicular to 
the vorticity vector.



The Gamma Equation

∂Γ
∂t

−∇r
2d − 1

r
∂
∂r

rer ⋅∇r × Vh ζ + 2Ωr( )−w η+ 2Ωh( )⎡⎣ ⎤⎦{ }
= ∇r ⋅ − ∂α

∂r
∇r p +

∂p
∂r

∇rα
⎛
⎝⎜

⎞
⎠⎟ − er ⋅∇r × ∇× F( )h

der ≡ η+ 2Ωh( )×Vh

where



that the ‘‘cell walls’’ (i.e., the arcs connecting the Voronoi
corners) are perpendicular bisectors of the intersecting
arcs, called ‘‘grid segments,’’ which connect the centers of
the two grid points that they separate. The converse is not
true, however; as can be seen in Fig. 4c, the grid segments
do not necessarily bisect the cell walls. This has important
consequences, which are discussed in section 3c and in
section 4.
As discussed above, our grid is truly spherical: we use

great circles to determine the distances between points
on the IHP grid, and the curved surface of the sphere to
determine the cell areas. This ensures that the shape and
total area of the grid are independent of resolution. If
two geodesic grids of different resolutions are used to
represent the atmosphere and Earth’s surface (i.e., the
ocean and the land surface), the total surface area seen
by the atmosphere grid is the same as the total area seen
by the surface grid. This ensures, for example, that the
upward flux of energy or mass or momentum from the
surface grid can exactly match the corresponding upward
flux of energy entering the atmosphere from below.
The alternative to our spherical grid can be called a

‘‘faceted’’ grid, in which the linear distances between the
points on the grid are used instead of great-circle dis-
tances, and the planar areas between the corner points
are used to determine the cell areas, as if the sphere was
replaced by a faceted jewel. A faceted grid converges
toward a spherical grid as the resolution increases.
For a technical reason explained in section 4c, we use

the spherical grid up to G11 and faceted grids for G12
and G13. At such high resolutions, the differences be-
tween the faceted and spherical grids are very minor.
There are three important differences between the

planar hexagonal and spherical IHP grids. (i) The regular

hexagons have uniform shapes and sizes, while the
spherical IHP grid has a mixture of hexagons and pen-
tagons of varying sizes. The ratio of the smallest to
largest cell sizes is about 78% on the raw grid with me-
dium and high resolutions. (ii) The distances between
the grid points are uniform on the regular hexagonal
grid, but not on the spherical IHP grid. (iii) The grid
segments bisect the cell walls on the regular hexagonal
grid, but not on the spherical IHP grid. Recall that, be-
cause of the use of Voronoi corners, the arcs connecting
the corners are already perpendicular bisectors of the
grid segments on the spherical IHP grid, as on the reg-
ular hexagonal grid. In section 4, we will show that the
spherical IHP grid can be optimized to yield improved
error convergence properties.

c. Convergence of selected finite-difference operators
on the raw grid

Wenow analyze the truncation errors of three second-
order finite-difference operators on the spherical IHP
grid:

Laplacian operator: (=2b)0[
1

A0
!
n

i51
d0,i

 
bi 2b0

‘0,i

!

,

(3.2)

Jacobian operator:

[J(a,b)]0[
1

A0
!
n

i51
d0,i

ai1a0

2

"
(bC)i 2 (bC)i21

d0,i

#
(3.3)

and

FIG. 4. Generation of an IHP grid from a raw grid for the case of G1 resolution. (a) The blue dots are the vertices of
the raw grid. The Voronoi corners, represented by the green dots, are equidistant from the three neighboring vertices
of the raw grid, and so lie at the centers of the triangular cells of the raw grid. (b) The hexagonal–pentagonal cells of
the icosahedral grid are obtained by connecting the Voronoi corners. The dots are the cell centers. (c) The triangular
cells of the raw grid and the hexagonal and pentagonal cells of the IHP grid are both shown. The vertices of the raw
grid correspond to the centers of the IHP grid cells.
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+

Unified systemGeodesic grid

+

Vector vorticityZ staggering

+

= Curl Curl

Curl Curl is a geodesic Z-grid version of the VVM, 
and uses the Unified System of equations.



Strengths & Weaknesses of Curl Curl

No computational modes (because Z grid)

Excellent dispersion properties for inertia-gravity waves (because Z grid)

Direct prediction of the vertical component of the vorticity, which 
controls large-scale dynamics

Direct prediction of the curl of the horizontal vorticity, which controls 
small-scale dynamics

Predicts pseudo-scalars, rather than vectors (because Z grid)

Guarantees the non-divergence of the three-dimensional vorticity vector 
(because VVM)

Strengths:

Requires solution of a pair of 2D elliptic equations at each level on each 
time step

Requires solution of a 3d elliptic equation, but with “friendly” Dirichlet 
boundary conditions

Weaknesses:



Closing Remarks

This talk has been about structural issues.

Structural design comes first.  The ideas discussed in this 
talk form the concrete and steel of the model, on which 
everything else depends.

The forms of the various operators also have to be 
specified, of course, and it’s important to do a good job 
with that. Ross has developed some very accurate and 
flexible operators for use with Curl Curl.

Computational performance and scaling are also important. 
Curl Curl scales well.
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Multigrid scaling

Our raw grid generation algorithm starts by bisecting
the triangular faces of the icosahedron inscribed. The
resulting vertices rare projected onto the sphere. The re-
cursive bisections and projections continue until the
desired resolution is reached. Projecting the edges of the
triangles onto the sphere completes the generation of
the grid. The vertices or corners of the spherical triangles
form the center points of the hexagonal–pentagonal
cells, which are Voronoi cells with respect to those center
points.
Optimization of the grid is needed to obtain good

convergence of finite-difference operators. Analyses of
truncation errors of the finite-difference Laplacian, Ja-
cobian, and divergence operators on the raw icosahedral
grids show a nearly first-order convergence rate for the
RMS (L2-norm) errors and almost no convergence of
the maximum (L‘-norm) errors. These rates are much
slower than the desired second-order convergence, which
is obtained (as expected) using a regular hexagonal grid
on a plane.
We have tested three different optimization algo-

rithms that can be applied to unoptimized IHP grids to
improve the error convergence rates of the three oper-
ators. The tweaking algorithm tries to minimize the
distance between the midpoint of the cell wall and the
point that the grid segments intersect the cell wall by
moving the grid points (or cell centers) of the raw grid.
The spring dynamics algorithm tries to homogenize the

distances between the grid points, or cell centers. The
CVT optimization makes the Voronoi cell centers co-
incide with the barycentric centers of the cells. All three
optimization algorithms reduce the errors and improve
the convergence rates. The tweaking optimization pro-
duces nearly first- and second-order convergence rates
for the L‘- and L2-norms. The spring grid and CVT
optimizations produce slightly slower convergence rates
for theL2-norms, relative to the tweaked grid. However,
both the spring grid and CVT optimizations produce
very poor convergence rates for the L‘-norms.
The tweaking optimization algorithm presented here

uses a different cost function than that of HR95b. The
new tweaked grid produces more accurate operators and
smoother simulations.
Both the code used to generate the raw grid and the

tweaking optimization code are being made available as
supplements to this paper. The grids themselves are also
being made available.
Finally, we have designed and demonstrated a parallel

multigrid solver that scales reasonably well up to 81 920
processes.We aremaking the solver code available to the
community as a supplement to this paper.
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FIG. 16. Strong parallel scalability of the V-cycled multigrid for the native resolutions G4–
G13. At each thick mark on the axis and ordinate, the number of processes and the time
(seconds) are doubled, respectively. The slope of the red thin lines indicate perfect scalability.
Time is measured over one V cycle for the case of 192 model layers. The computations were
performed on Hopper, a Cray XE6 computer at the National Energy Research Scientific
Computing Center (NERSC).
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Dispersion of Inertia-Gravity Waves



Dispersion of Rossby Waves


