Convection, Tropical Waves, and Double ITCZs

Da Yang (<u>da.yang@berkeley.edu</u>)

The Miller Institute for Basic Research in Science Department of Earth & Planetary Science University of California, Berkeley

Thanks to John Chiang (UC Berkeley) Mike Pritchard (UC Irvine) Zhihong Tan (Caltech) Double Inter-tropical Convergence Zones (ITCZs)

Black: Observation Others: CMIP simulation results

Hwang & Frierson, 2013

Khairoutdinov et al. 2005

Khairoutdinov et al. 2005

Khairoutdinov et al. 2005

Khairoutdinov et al. 2005

SPCAM simulates even stronger MJOs then observation.

Kim et al. 2009

Double ITCZs emerged during a strong Madden-Julian Oscillation event in March 2015

Westerly winds (m/s)

http://www.bom.gov.au/climate/mjo/#tabs=Weekly-note

Why double ITCZs?

Anomalous anti-Hadley circulations

Arguments about ITCZ location:

A1: SST distribution: *e.g.*, Lindzen and Nigam 1987; Neelin 1989; Wang and Li 1993; Chiang et al. 2001

A2: Quasi-equilibrium: *e.g.*, Emanuel 1995; Prive and Plumb 2007; Boos and Kuang 2010

A3: Energy transport: *e.g*, Kang et al. 2008, 2009; Frierson and Hwang 2012; Donohoe et al. 2013; Bischoff and Schneider 2015

- Imagine ...
 - Aquaplanet
 - Forced by uniformly distributed sea surface temperatures
 - (No baroclinic waves)
 - No Sunlight (only longwave radiation)

- Imagine ...
 - Aquaplanet
 - Forced by uniformly distributed sea surface temperatures
 - (No baroclinic waves)
 - No Sunlight (only longwave radiation)
- Global radiative-convective equilibrium
 - Are there still tropical rainfall peaks?
 - Where are they?

- Imagine ...
 - Aquaplanet
 - Forced by uniformly distributed sea surface temperatures
 - (No baroclinic waves)
 - No Sunlight (only longwave radiation)
- Global radiative-convective equilibrium
 - Are there still tropical rainfall peaks?
 - Where are they?
- An educated guess based on:
 - SST distribution:
 - Quasi-equilibrium:
 - Energy transport:

- Imagine ...
 - Aquaplanet
 - Forced by uniformly distributed sea surface temperatures
 - (No baroclinic waves)
 - No Sunlight (only longwave radiation)
- Global radiative-convective equilibrium
 - Are there still tropical rainfall peaks?
 - Where are they?
- An educated guess based on:
 - SST distribution:
 - Quasi-equilibrium:
 - Energy transport:

Double ITCZs emerge over uniform SSTs

This result suggests:

- Thermodynamic constraints cannot predict this behavior.
- We need other constraints.

Schneider 2006; Bordoni and Schneider 2008; Shaw 2014;

In the upper troposphere, $f\overline{v} \sim S < 0$.

In the upper troposphere, $f\overline{v} \sim S < 0$.

AM flux convergence requires equatorward flow

color shading: S

Blue: convergence, *S* < 0 Red: divergence, *S* > 0

AM flux convergence requires equatorward flow

color shading: S

Blue: convergence, *S* < 0 Red: divergence, *S* > 0 The Madden-Julian Oscillation dominates the momentum transport.

Consistent with studies under more realistic setup, *e.g.*, Lee 1999, Caballero and Huber 2010, Arnold et al. 2012

Summary

- Double ITCZs are simulated over uniform sea surface temperatures in SPCAM.
 - NOT expected from the thermodynamic arguments.
- The angular momentum argument can explain this result.
- The Madden-Julian Oscillation dominates the meridional eddy momentum transport.

 When the equatorial wave activity (e.g., the MJO and Rossby waves) is strong, this proposed mechanism can produce double ITCZs.

Weak temperature gradient approximation holds globally

Figure 1: Schematics of the proposed mechanism of the anti-Hadley circulation. The left and right boxes are connected by continuity.

$$f\bar{v} = \partial_y \overline{u'v'} \tag{2}$$

 $)^{1/2}$

$$\bar{\omega}\partial_p \bar{\theta} = \bar{Q} \tag{3}$$

$$\partial_y \bar{v} + \partial_p \bar{\omega} = 0 \tag{4}$$

From (4), we know

$$\frac{|\omega|}{|v|} \sim \frac{\Delta p}{L_y} \tag{5}$$

Here L_y is the meridional extent of this tropic cell, and $\Delta p = p_s - p_t$. Combining (2) & (3), we get

$$\frac{\omega}{v} \sim \frac{fQ}{\partial_y \overline{u'v'} \partial_p \bar{\theta}} \sim \frac{2\Omega \sin \varphi_c \bar{Q}}{\partial_y \overline{u'v'} \partial_p \bar{\theta}} \sim \frac{2\Omega \varphi_c \bar{Q}}{\partial_y \overline{u'v'} \partial_p \bar{\theta}}$$
(6)

MJO in SAM SST = 290 K, 1/3 of Earth's circumference

100

120

