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Going back to 2015 winter team meeting

SPCAMS3.0 with prescribed SST

Simulation dtime600 dtime900 dtime1800 dtime3600

Time step (s) 600 900 1800 3600
fecate (1/h) 6 4 2 1

—
Higher “scale coupling frequency (fscale)”



Striking quasi-linear thermal and SWCF responses

to increased scale coupling frequency
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Reversing key biases introduced by reduced CRM domain

CRM setup
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Reversing key biases introduced by reduced CRM domain

[Yu and Pritchard

(2015)]
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Zonal mean cloud forcing
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CRM throttling is only an artifact within a single time step

Pritchard, Bretherton, and DeMott (2014)’s hypothesis:

Artificially throttled deep convection by trapped subsidence

Typical CRM array (4km x 32) Reduced CRM array (4km x 8)

BB SR 1‘[1

Reduced CRM domain
-> stronger subsidence
-> preventing ventilation
-> 100 much liquid cloud
-> too strong SWCF



CRM throttling is only an artifact within a single time step

Pritchard, Bretherton, and DeMott (2014)’s hypothesis:

Artificially throttled deep convection by trapped subsidence

Typical CRM array (4km x 32) Reduced CRM array (4km x 8)

BB SR 1‘[1

CRM is not a closed system
This artifact is corrected by GCM’s large scale dynamics

More frequent scale coupling = more ventilation — less liquid cloud



Our very first hypothesis:

high fscae —> unwinding convective
throttling




Now, we doubt our previous

hypothesis.




Inconsistent response (1): updraft mass flux

[Pritchard, Bretherton, and DeMott (2014)]
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Inconsistent response in updraft mass flux

[Yu and Pritchard (2015)] [Pritchard, Bretherton, and DeMott (2014)]
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Convection becomes bottom-heavy



Inconsistent response (2): cloud water profile

Cloud condensate (g/kg)
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Inconsistent response (2): cloud water profile

[Yu and Pritchard (2015)] [Pritchard, Bretherton, and DeMott (2014)]
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Inconsistent response (3): precipitation tail

Expectation from the convective throttling hypothesis (fscaeT):

Reduced extreme precipitation tall



Inconsistent response (3): precipitation tail

Expectation from the convective throttling hypothesis (fscaeT):

Reduced extreme precipitation tall

Precipitation amount (20S—20N) Precipitation frequency (20S—20N)

L

1

161 dtime600 10
dtime900

> 102 | dt!me1800 10°

) dtime3600

O GPCP o

- X

€ 08 TRMM °" 10"

-

0.1 1 10 100 0.1 1 10 100
mm/day mm/day



Why does faster scale coupling make

convection more bottom-heavy?




Convection — Large scale wave interaction?

The Wavelength Dependence of the Gross Moist Stability and the Scale Selection
in the Instability of Column-Integrated Moist Static Energy

ZHIMING KUANG [2011]

Large-scale gravity wave with a single zonal wavenumber
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Convection — Large scale wave interaction?

The Wavelength Dependence of the Gross Moist Stability and the Scale Selection
in the Instability of Column-Integrated Moist Static Energy

ZHIMING KUANG [2011]

Large-scale gravity wave with a single zonal wavenumber
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“ At long wavelengths, the required temperature anomalies become

sufficiently strong to affect the shape of convective heating.” [Kuang, 11]
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Initially, we wondered about K11-like behavior at high fscae

[Kuang (2011)] [Yu and Pritchard (2015)]
CRM 3D SAM (Ax=2km) 2D SAM (Ax=4km)
L.S. model  a single wave with a fixed k GCM
L-5.-CRM instantaneous limited by fcale

Coupling



Initially, we expected K11-like behavior at high fscale

[Kuang (2011)] [Yu and Pritchard (2015)]
CRM 3D SAM (Ax=2km) 2D SAM (Ax=4km)
L.S. model  a single wave with a fixed k GCM
L.S.—CRM : _
Coupling mstantfneous limited by fscale

With more frequent scale coupling,
SPGCM may behave like K11 ??

e.g. Higher fscae — Bottom-heavy convection



Initially, we wondered about K11-like behavior at high fscae

[Kuang (2011)] [Yu and Pritchard (2015)]
CRM 3D SAM (Ax=2km) 2D SAM (Ax=4km)

L.S. model  a single wave with a fixed k GCM
L.S.—CRM : .

Coupling mstantfneous limited by fscale

With more frequent scale coupling,
SPGCM may behave like K11 ??
e.g. Higher fscae = Bottom-heavy convection
xes’

wov! Larger T anomalies with a higher fscae? But...



Opposite sensitivity: better WTG with high fscaie
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WTG conformity seems from dynamical adjustment
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Large-scale waves are still relevant

T300'-w500 cospectrum
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Scale coupling frequency changes the character of convective

organization, but we still don’t know why

With faster coupling between GCM and CRM,

Convection becomes more

WTG conforms better.
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For further details, see TR : o
Yu and Pritchard, JAMES, 2015. @Prempﬂatlon tail amplifies.




Scale coupling frequency changes the character of convective
organization, but we still don’t know why

With faster coupling between GCM and CRM,

- Something artificial (scale coupling frequency or time step)
influence something really important in tropical dynamics
(vertical structures)

- Maybe, ‘scale coupling frequency’ can be used to design

experiments to see the effect of altering convective
organization to planetary scale phenomena

e Cloud forcing biases decrease.

For further details, see TR : o
Yu and Pritchard, JAMES, 2015. @Prempﬂatlon tail amplifies.




