CMMAP Winter 2016 Team Meeting

More Frequent GCM–CRM Coupling Leads to More Bottom-Heavy Convection

Sungduk Yu (sungduk@uci.edu) and Mike Pritchard

Department of Earth System Science, UC Irvine

(Special thanks to Chris Bretherton, Stefan Tulich, Brian Mapes, and David Randall)

Going back to 2015 winter team meeting

SPCAM3.0 with prescribed SST

Simulation	dtime600	dtime900	dtime1800	dtime3600
Time step (s)	600	900	1800	3600
f _{scale} (1/h)	6	4	2	1

Higher "scale coupling frequency (fscale)"

Striking quasi-linear thermal and SWCF responses to increased scale coupling frequency

Reversing key biases introduced by reduced CRM domain

Latitude (degN)

[Pritchard, Bretherton, and DeMott (2014)]

Reversing key biases introduced by reduced CRM domain

Pritchard, Bretherton, and DeMott (2014)'s hypothesis:

Artificially throttled deep convection by trapped subsidence

Reduced CRM array (4km x 8)

Reduced CRM domain -> stronger subsidence -> preventing ventilation -> too much liquid cloud -> too strong SWCF Pritchard, Bretherton, and DeMott (2014)'s hypothesis:

Artificially throttled deep convection by trapped subsidence

CRM is not a closed system

This artifact is corrected by GCM's large scale dynamics

More frequent scale coupling \rightarrow more ventilation \rightarrow less liquid cloud

Our very first hypothesis: high *f*_{scale} —> unwinding convective throttling

Now, we doubt our previous hypothesis.

Inconsistent response (1): updraft mass flux

Expectation from the convective throttling hypothesis (f_{scale}):

Boosting mass flux at all levels

[Pritchard, Bretherton, and DeMott (2014)]

Inconsistent response in updraft mass flux

Convection becomes bottom-heavy

Inconsistent response (2): cloud water profile

Expectation from the convective throttling hypothesis $(f_{scale}\uparrow)$:

Shift of cloud water towards upper troposphere

Inconsistent response (2): cloud water profile

Expectation from the convective throttling hypothesis (f_{scale}):

Reduced extreme precipitation tail

Expectation from the convective throttling hypothesis (f_{scale}):

Reduced extreme precipitation tail

Why does faster scale coupling make convection more bottom-heavy?

Convection – Large scale wave interaction?

The Wavelength Dependence of the Gross Moist Stability and the Scale Selection in the Instability of Column-Integrated Moist Static Energy

ZHIMING KUANG

[2011]

Large-scale gravity wave with a single zonal wavenumber

$$\left\{\varepsilon[\overline{\rho}w'(x_0, z, t)]_z\right\}_z = -k^2 \frac{\overline{\rho}g}{\overline{T}} T'(x_0, z, t)$$

CSRM (at x=x₀)

$$T'_{t} + w' \left(\frac{d\overline{T}}{dz} + \frac{g}{c_{p}}\right) = S'_{T}$$

$$q'_{t} + w' \frac{d\overline{q}}{dz} = S'_{q}$$

Convection – Large scale wave interaction?

The Wavelength Dependence of the Gross Moist Stability and the Scale Selection in the Instability of Column-Integrated Moist Static Energy

ZHIMING KUANG

[2011]

Large-scale gravity wave with a single zonal wavenumber

$$\{\varepsilon[\overline{\rho}w'(x_0, z, t)]_z\}_z = -k^2 \frac{\rho g}{\overline{T}} T'(x_0, z, t)$$
CSRM (x=x_0)
$$T'_t + w' \left(\frac{d\overline{T}}{dz} + \frac{g}{c_p}\right) = S'_T$$

$$q'_t + w' \frac{d\overline{q}}{dz} = S'_q$$

"At long wavelengths, the required temperature anomalies become sufficiently strong to affect the shape of convective heating." [Kuang, 11]

$$\{\varepsilon[\overline{\rho}w'(x_0, z, t)]_z\}_z = -k^2 \overline{\overline{T}} T'(x_0, z, t)$$

$$\begin{array}{c} k \uparrow \Longrightarrow T' \downarrow \\ k \downarrow \Longrightarrow T' \uparrow \end{array}$$

	[Kuang (2011)]	[Yu and Pritchard (2015)
CRM	3D SAM (Δx=2km)	2D SAM (Δx=4km)
L.S. model	a single wave with a fixed k	GCM
L.S.–CRM Coupling	instantaneous	limited by f _{scale}

Initially, we expected K11-like behavior at high f_{scale}

e.g. Higher $f_{scale} \rightarrow$ Bottom-heavy convection

Opposite sensitivity: better WTG with high fscale

 $T'\omega < 0$

WTG conformity seems from dynamical adjustment

Large-scale waves are still relevant

Scale coupling frequency changes the character of convective organization, but we still don't know why

With faster coupling between GCM and CRM,

Yu and Pritchard, JAMES, 2015.

Scale coupling frequency changes the character of convective organization, but we still don't know why

With faster coupling between GCM and CRM,

