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Introduction

The isentropic system of equations has particular advantages in numerical modeling of weather and 
climate.  Among these is the elimination of the vertical velocity in adiabatic flow, which greatly reduces the 
numerical errors associated with vertical advection.  Also, vertical resolution is enhanced in regions of high 
static stability which leads to better resolving of features such as the tropopause boundary.  However, the 
extreme isentropic overturning that can occur in fine-scale atmospheric motion presents a challenge to 
nonhydrostatic modeling with the isentropic vertical coordinate.

We have built a nonhydrostatic model based on the hybrid vertical coordinate of Konor and Arakawa 
(1997) which is a terrain-following Eulerian σ coordinate near the surface and transitions to the quasi-
Lagrangian θ coordinate with height.  We incorporated adaptive grid techniques into the handling of the 
coordinate surfaces in order to allow isentropic overturning and negative static stabilities to occur while 
maintaining coordinate monotonicity and spatial smoothness of the model surfaces.

Here we present results from two-dimensional mountain wave experiments.  The first is a small-amplitude 
wave simulation which illustrates the physically intuitive quasi-Lagrangian representation of vertical 
momentum transport with the isentropic vertical coordinate.  The second is a simulation of the 11 January 
1972 Boulder, Colorado downslope windstorm which features large-amplitude wave breaking.  The results 
show the benefits of the isentropic coordinate in terms of representing layers with high static stability and 
reducing numerical dispersion error of vertical tracer transport.

Simulation of the 11 January 1972 
Boulder, Colorado Downslope Windstorm

A much-studied meteorological event is the 11 January 1972 Boulder, Colorado windstorm which 
produced surfaces winds in excess of 100 m.p.h. and caused extensive property damage.  Such windstorms 
involve mountain wave amplification and wave breaking which vertically redistribute zonal momentum.  
The following plots compare three model simulations of the windstorm -- the “SIGMA500” case is a high 
vertical resolution σ-coordinate run with 500 levels in the lowest 25 km; the “SIGMA125” case is a 
“baseline” vertical resolution σ-coordinate run with 125 levels in the lowest 25 km; and the “HYBRID125” 
case is a hybrid vertical coordinate run, also with 125 levels in the lowest 25 km.  It can be seen that the 
hybrid-coordinate model is able to capture the wave breaking, and produces improved results over the σ 
coordinate with the same number of levels, in terms of resolving layers with high static stability.  The 
hybrid coordinate also results in less dispersion error associated with tracer transport compared to both 
the “baseline” and high vertical resolution σ coordinate model runs.  The experimental setup follows 
Doyle et al (2000).  All plots are at 3 hours simulation time unless otherwise noted.
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The vertical coordinate

Following Konor and Arakawa (1997) we define the vertical coordinate as a prescribed function of height 
and potential temperature.  Since our model is nonhydrostatic we use geometric height instead of 
pressure as the height metric.

The vertical coordinate (η) is defined as:

(1)h = FHq, sL = f HsL + gHsL q,

(2)wheres =
z - zS
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
zT - zS

, zS = surface height, and zT =model top height.

The transition of η from terrain-following to potential temperature coordinates requires:

(3)

gHsL Ø 0 ass Ø 0

f HsLØ 0 and gHsL Ø 1 ass Ø 1

,

.

Vertical momentum transport:
σ versus hybrid vertical coordinates

Small-amplitude mountain wave experiment

Model initialization: Terrain characteristics: Grid spacing:
* Initially isothermal (T = 287 K) * “Witch of agnesi” curve * Δx = 200 m

* Uniform zonal flow (u = 20 m s-1) * Mountain height = 10 m * Δz≅250 m
* Mountain half-width = 2 km

Zonally-averaged zonal momentum 
equation in η coordinates:

Divergence of vertical 
momentum flux

Figure 1:  Vertical profiles of vertical momentum flux at steady-
state (t = 1.11 hours).
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Incorporation of an adaptive grid

In most of the regions of the model, the generalized vertical velocity η is diagnosed to maintain the 
functional relationship of σ and θ given by Equation 1 as in Konor and Arakawa (1997).  We also 
incorporate adaptive grid techniques as in the nonhydrostatic models of Skamarock (1998), He (2002) and 
Zangl (2007).  In regions of negative static stability and isentropic overturning, coordinate smoothing in the 
horizontal and vertical is applied and an alternative method of diagnosing the generalized vertical velocity 
is used as shown in Figure 2.
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Figure 2:  Regions where adaptive 
grid techniques are applied (ovals).  
Isentropic surfaces shown by black 
curves, coordinate surfaces by red 
curves.
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Static stability (square of Brunt-Väisälä frequency)

Bulk Richardson Number  --  RB = gθ-1 δz δθ (δu)-2

Zonal wind component

Passive tracer initialization:
Spatial distribution shown on left, 
scatter plot on right (red curves 
represent continuous solution for 
all times).
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