VVM-AQUA ISSUES AND RESULTS

Luke Van Roekel CMMAP Team Meeting July 2009

MOTIVATION

- As ocean measurements are rather sparse in space and time, an LES will be used to supplement data.
- After trying to borrow the LES of another institution, we have chosen to redesign the VVM (Jung and Arakawa, 2008) for use in the ocean.
 - The new model will be called VVM-Aqua
 - This allows easy access to those who have previously used the model.
 - Special thanks to Mingxuan, Celal, and Joon-hee
- The goal is to develop an entrainment parameterization for use in the ocean component of the GCM.
 - The VVM-Aqua will also be used to test certain assumptions in this parameterization.
 - The parameterization will be used in a prognostic thermocline depth model.

TO-DO LIST

- New Equation of State
 - For now we choose a linear equation of state

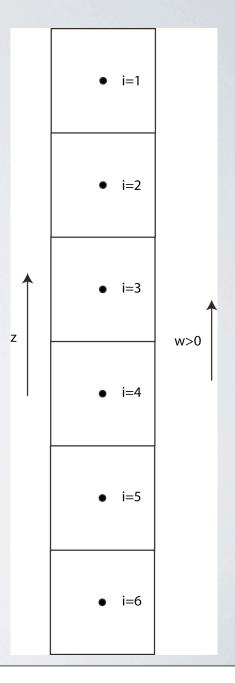
 $\rho = \rho_o \left(1 - \alpha \left(T - T_o \right) + \beta \left(S - S_o \right) \right); \quad \rho_o = 1000 \, kg \, m^{-3}; \quad T_o = 15^{\circ} C; \quad S_o = 35 PSU; \quad \alpha = 2 \times 10^{-4} \, {}^{o} C^{-1}; \quad \beta = 7.6 \times 10^{-4} \, PSU^{-1}$

- Salinity added (this and new passive tracer live with temperature)
- Parameterization of Solar Heating
 - <u>Two Choices:</u>
 - Simple two band exponential with constant extinction based on Jerlov water type (Paulson and Simpson 1977).
 - Coefficients based on vertical profile of turbidity (predicted in the VVM-Aqua).
- "Flip" Vertical advection.
- Sub-grid mixing scheme (Smagorinsky), no mixing for Ri > 0.25

 $\kappa = (0.17\Delta)^2 f(Ri, j) \sqrt{2S_{ij}S_{ij}}; \Delta = (dx dy dz)^{1/3}; f(Ri, j) = \begin{cases} \sqrt{1 - \frac{Ri}{0.25}} & j = 3\\ 1 & else \end{cases}$

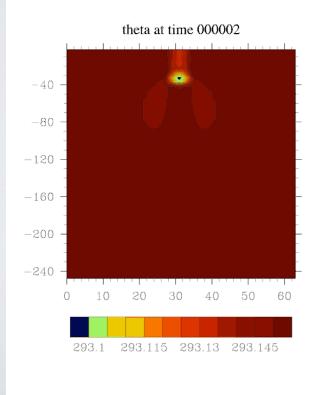
Stokes Vortex Force

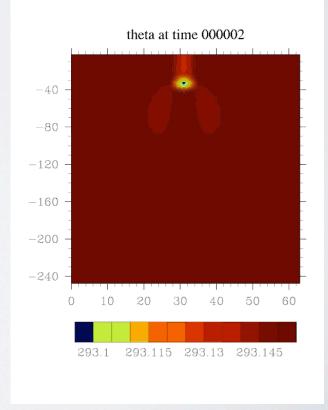
ISSUES


- Since height increases toward the surface and positive vertical velocity also points toward the surface, there will be a number of sign changes in the VVM.
 - The definition of what is upstream changes from the atmosphere to ocean. Not a conceptually difficult issue, but it did take time.
- When non-constant coefficient diffusion was introduced, the structure of the VVM had to be altered to accommodate this change.
 - In the model we calculate the effect of diffusion on momentum and then compute the effect on vorticity. For example, we first calculate

$$\nabla \bullet (\kappa_u \nabla u)$$
 and $\nabla \bullet (\kappa_w \nabla w)$

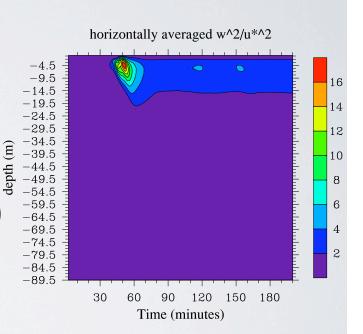
- Then we can compute the tendency for y-vorticity (η) as


$$\frac{\partial}{\partial x} \Big(\nabla \bullet \big(\kappa_w \nabla w \big) \Big) - \frac{\partial}{\partial z} \Big(\nabla \bullet \big(\kappa_u \nabla u \big) \Big)$$


• This change also allowed for easier implementation of surface fluxes.

BUBBLETEST

- The first test of the model is a bubble test. In the ocean case, we consider a negatively buoyant (cold) bubble.
- We have tested third (your right) and fifth (left) order advection. It is evident that the 5th order scheme better preserves the variance.
 - Adds about 0.07 seconds per time step (30% increased burden)

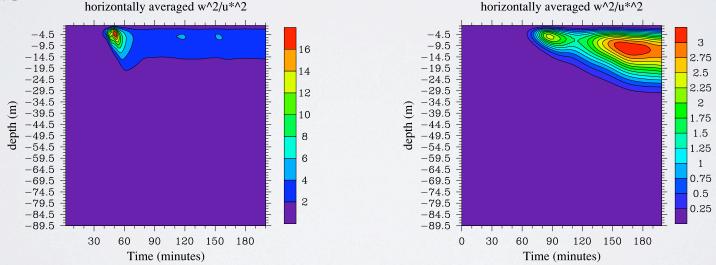


ISSUES II - LANGMUIR CELLS

 In oceanographic literature, langmuir cells are most commonly parameterized by the Stokes Vortex Force (Craik 1977 and Leibovich 1977). This is given by

$u_s \times \omega$

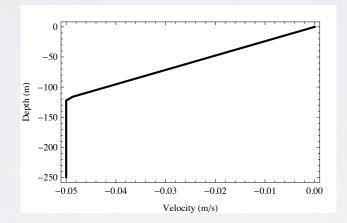
- where $u_{\rm s}$ is the parameterized stokes (wave) drift and ω is the 3-D vorticity
- To use in VVM-Aqua, we need to discretize ∇×(u_s×ω) this turns out to be difficult, and involves a lot of interpolation. However, this method creates a normalized w² of over 16, scalings suggest ~1.4.
 - Problem is due to discretization of $\frac{\partial(u,\xi)}{\partial z}$
 - Would be beneficial to use the current model code discretization, since there is a similar term.

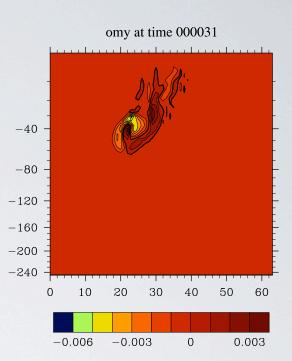


ALTERNATIVE SOLUTION

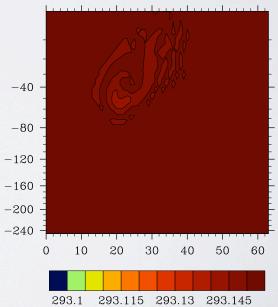
- To take advantage of the current model code, we begin from the momentum equation with the stokes vortex force and rederive the vorticity equations.
- The new equations can be written as in the standard VVM-Aqua, except

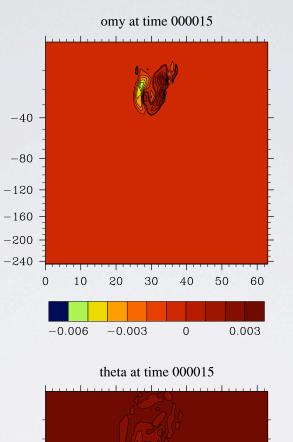
 $u \rightarrow u + u_s \qquad v \rightarrow v + v_s$

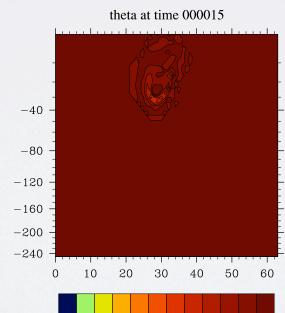

This allows use of the current model code. The change in the previous plot is dramatic

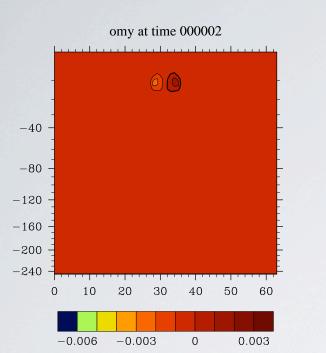

 Further, the changed equations suggest that the stokes vortex force will act like a mean shear flow

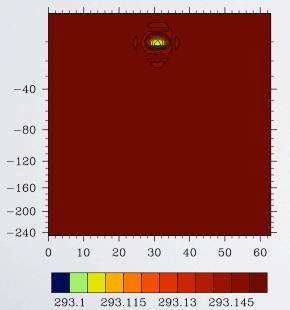
BUBBLE IN SHEARED FLOW


• Applied shear is given by the following profile.




 Again, it is a negatively buoyant bubble, y-component of vorticity and temperature are plotted in vertical cross sections through the middle of the domain


theta at time 000031

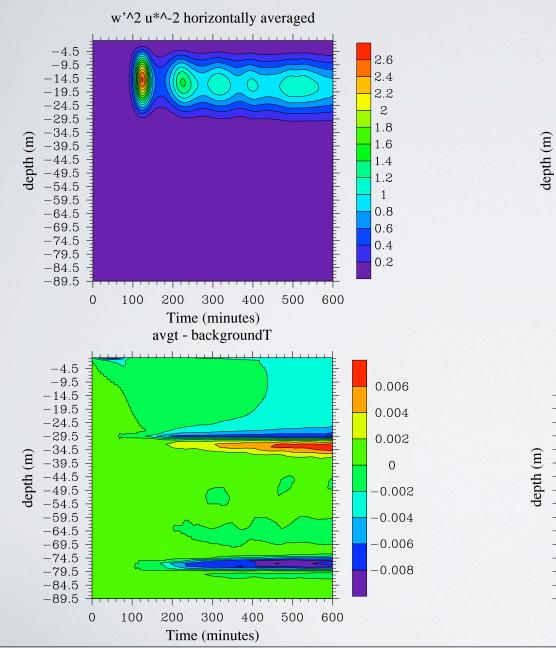


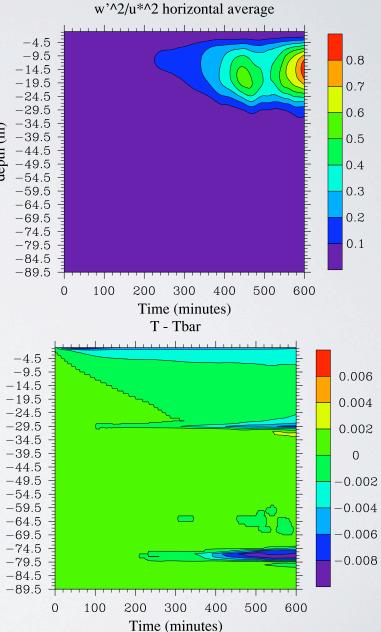
293.1 293.115 293.13 293.145

theta at time 000002

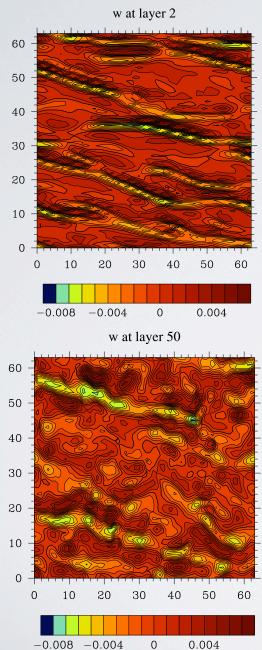
LANGMUIR SET UP

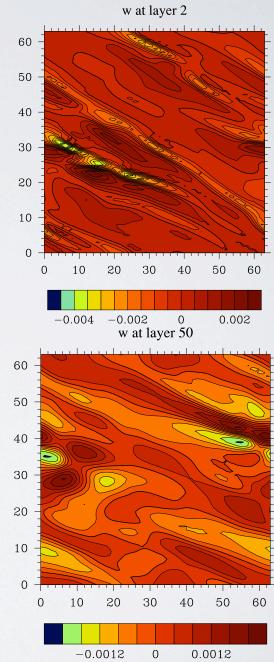
- The model is initialized with a 30 meter deep mixed layer and constant stratification below (no salinity). ($u_* = 0.0061$)
- At the surface a weak destabilizing heat flux (-5 W/m2) is imposed and a constant wind stress (u = v = 0) and a Coriolis parameter of 10⁻⁴s⁻¹ is included
- The stokes drift is parameterized as a monochromatic wave


 $u_s(z) = U_s e^{-2kz}; \quad U_s = 0.068 m s^{-1}, k = 0.105 m^{-1}$


• We also have,

$$\Delta x = \Delta y = 5m; \ \Delta z = 1m; \ \Delta t = 1s; \ nx = ny = 64; \ nz = 90$$


• Further, a sponge layer is included in the bottom 1/3 of the domain.


LANGMUIRTEST

LANGMUIR TEST II

RECAP AND FUTURE DIRECTIONS

- The bubble tests and langmuir tests yield encouraging results.
- The next step is to use the VVM-Aqua to verify a prognostic model of thermocline depth for the ocean GCM.
 - In particular, the focus will be on representation of the diurnal cycle in the GCM and how the vertical distribution of particulate matter (turbidity) can influence the diurnal cycle.
 - We will also conduct tests separating the effects of changing salinity and temperature on entrainment.