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Fig. 1. Pickup of ensemble average precipitation 〈P 〉, con-
ditionally averaged by 0.3 mm bins of column water vapor
w for 1K bins of the vertically averaged tropospheric tem-
perature T̂ , for the eastern Pacific. Lines show power law
fits above the critical point of the form (2).

3. Dependence of the deep convection transition

on tropospheric temperature

To investigate the effect of tropospheric temperature
on the transition to strongly precipitating deep convection,
we need a simple measure of the tropospheric temperature
that characterizes the leading variance and is reasonably
well observed. We examine three simple measures: (i) ver-
tically averaged tropospheric temperature T̂ (from 200 to
1000 hPa), for which we present most results; (ii) vertically
integrated saturation value, q̂sat, from 200 hPa to the sur-
face pressure; (iii) saturation value integrated through a

lower tropospheric layer (550-850 hPa), q̂sat
LT . The latter

two measures are further discussed in subsections 3b and
3c. In each case, the averages are in pressure coordinates,
i.e., mass weighted.

Reasons for using T̂ include: the leading vertical struc-
ture of temperature variance tends to be coherent through
the troposphere in the tropics, with temperature at each
level correlating highly with tropospheric average (Hol-
loway and Neelin 2007). Furthermore, microwave retrievals
of tropospheric temperature tend to have an influence func-
tion through a deep layer (Christy et al. 2000) and these are
assimilated in reanalysis data sets. This suggests that deep
measures of tropospheric temperature are likely to be rea-
sonably reliable even from the reanalysis data sets. This is
aided by the long spatial correlation scale of temperature
in the horizontal in the tropics. Detailed aspects of re-
analysis vertical structure might not be reliable for present
purposes (e.g., Trenberth and Guillemot 1998, and our own
checks of reanalysis boundary layer variables against buoy
data) Finally, for simple theoretical considerations, verti-
cally integrated temperature provides a counterpart to the
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Fig. 2. a) Eastern Pacific ensemble average precipitation
〈P (w/wc)〉 showing the collapse of the curves for all T̂ when
column water vapor is rescaled by the critical value wc for
each T̂ . Inset: log-log plot of 〈P 〉 versus (w − wc)/wc (for
w > wc), offset vertically for clarity; straight lines show the
fit of (2) for β = 0.23. b) As in (a) but for the Atlantic.

vertically integrated moisture as outlined in section 6. We
use the vertical mass-weighted average (as opposed to in-
tegral) in the data analysis to provide more familiar units.

We compute precipitation statistics conditionally aver-
aged on column water vapor w and T̂ , for bins of 0.3mm
and 1K, respectively, for the tropics from 20N to 20S over
the 4.7 year time period. The TMI microwave retrievals
at 0.25 degree latitude-longitude resolution are effectively
snapshots in time, so the conditionally averaged precipita-
tion rate can be quite high for high w values. We separate
out Western Pacific, Eastern Pacific and Atlantic Ocean
regions to verify if the aspects we expect to be universal
are reproduced in each, and to see the nature of the differ-
ences in properties that are expected to change with the
large-scale conditions.

a. The pickup in precipitation

The rapid increase in ensemble-average precipitation
seen in Fig. 1 as a function of water vapor above the crit-
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Fig. 1. Pickup of ensemble average precipitation 〈P 〉, con-
ditionally averaged by 0.3 mm bins of column water vapor
w for 1K bins of the vertically averaged tropospheric tem-
perature T̂ , for the eastern Pacific. Lines show power law
fits above the critical point of the form (2).
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Fig. 2. a) Eastern Pacific ensemble average precipitation
〈P (w/wc)〉 showing the collapse of the curves for all T̂ when
column water vapor is rescaled by the critical value wc for
each T̂ . Inset: log-log plot of 〈P 〉 versus (w − wc)/wc (for
w > wc), offset vertically for clarity; straight lines show the
fit of (2) for β = 0.23. b) As in (a) but for the Atlantic.
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Multiscale Modeling Framework



• We have compared satellite-based estimates of 
precipitation rate (P) conditioned on column 
water vapor (W) over the tropical oceans to 
the same quantities obtained from: 

• a 4-month, 32-column MMF simulation 
performed by Michael Pritchard (UCSD).

• a 5-year, 64-column MMF simulation 
performed by Roger Marchand (UW).

• The satellite estimates are for 25-km x 25-km 
areas; MMF are for 8-column (32-km) averages.

MMF Methodology



Ensemble average precipitation vs. column water vapor

• No evident deflection corresponding to critical point, no flattening of the 
precipitation beyond the critical value of the water vapor.

• Slightly higher maximum precipitation rates after 32-km averaging as compared 
to satellite data, and evidently lower than for 4-km CRM data.

• Modeled critical column water vapors are still significantly greater than the ones 
derived from satellite data (precipitation pickup occurs at higher column water 
vapor rates).

SP-CAM 8-column average (32-km averages) Measurements (Peters and Neelin 2006)



Water vapor frequency distribution
SP-CAM 8-column average (32-km averages) Measurements (Peters and Neelin 2006)

The frequency distribution of the SP-CAM 32-km averaged water vapor (for all and 
precipitating points only) exhibits similar features the as the one for satellite-derived data.

However, the number of occurrence for 32-km averaged dataset is smaller than the 
satellite-derived one by a factor of 5. 

This suggests that the 4-month long SP-CAM simulation may be too short to capture 
features characteristic for critical phenomena evident  in the 5-year long satellite-derived 
dataset.



Results from a 5-year MMF simulation
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Fig. 1. Pickup of ensemble average precipitation 〈P 〉, con-
ditionally averaged by 0.3 mm bins of column water vapor
w for 1K bins of the vertically averaged tropospheric tem-
perature T̂ , for the eastern Pacific. Lines show power law
fits above the critical point of the form (2).
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Fig. 2. a) Eastern Pacific ensemble average precipitation
〈P (w/wc)〉 showing the collapse of the curves for all T̂ when
column water vapor is rescaled by the critical value wc for
each T̂ . Inset: log-log plot of 〈P 〉 versus (w − wc)/wc (for
w > wc), offset vertically for clarity; straight lines show the
fit of (2) for β = 0.23. b) As in (a) but for the Atlantic.
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Fig. 1. Pickup of ensemble average precipitation 〈P 〉, con-
ditionally averaged by 0.3 mm bins of column water vapor
w for 1K bins of the vertically averaged tropospheric tem-
perature T̂ , for the eastern Pacific. Lines show power law
fits above the critical point of the form (2).
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each T̂ . Inset: log-log plot of 〈P 〉 versus (w − wc)/wc (for
w > wc), offset vertically for clarity; straight lines show the
fit of (2) for β = 0.23. b) As in (a) but for the Atlantic.
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MMF Results

1. Which observed features are evident? 
a. Increase of P beyond a critical PW.
b. Regional differences.
c. The dependence upon SST and column T. 
d. Collapse upon scaling by the critical PW.
Which are not?
e.  A roll-off of P at high PW.

2. How do the results depend on the analysis grid size?
Results for 4-km and and 32-km averages are 
essentially the same, except for a greater range of 
values at the smaller averaging size.



MMF Results vs Observations

What are the reasons for the discrepencies?

a. Model error(s)?

b. Measurement error(s)?

Our strategy: investigate both, but focus on model error(s).



(Peters et al. 2009)
Radar-derived Precip Rate vs Column Water Vapor 



(Seo et al. 2007)
TRMM Radar vs TMI Rain Rates



Use a giga-LES of deep convection
as a benchmark for the MMF CRM

•Idealized GATE (tropical ocean) simulation with 
shear.

•Used a CSRM (SAM) with 2048 x 2048 x 256 (109) 
grid points and 100-m grid size for a 24-h LES. 



Giga-LES “visible image” 180 km x 180 km





50 %

90 %

Vertical velocity statistics vs GATE (LeMone & Zipser 1980)



PDFs of TOGA COARE radar rain rate in (25-km)2 areas

Varma et al. (2004)
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Cluster sizes from TRMM radar

(Peters et al. 2009)



CRM simulations for addressing precipitation 
vs column water observations

Recommended configurations:

•Large domain (for large clusters and rare events).

•Long time interval (for rare events).

•Realistic forcing.

•High resolution (to resolve convection). 



•Giga-LES (benchmark):  LES resolution 
(0.1 km, 256 levels), moderate domain (200 km 
x 200 km), 1 day, GATE steady forcing with 
shear.

•GATE steady strong forcing with shear: 
Lower resolution (1 km, 33 levels), large domain 
(1000 km x 1000 km), several days.

•GATE actual time-varying forcing: 
Lower resolution (1 km, 96 levels), large domain 
(1000 km x 1000 km),  several days.

Our CRM simulations
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Column Water Vapor from GATE unsteady 

(1024 km x 1024 km)



broadly compare CRM 
results to observations

using the same 
analysis method



45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90

100

w (mm)

<
P

>
(w

) 
(m

m
/h

) 
a
n
d
 <

P
!2

>
/2

0
 (

m
m

/h
)2

64x64x808

 

 

35 40 45 50 55 60 65 70
10

0

10
1

10
2

10
3

10
4

10
5

10
6

w (mm)

N
(w

) 
a
n
d
 N

(w
) p

re
c

64x64x808

 

 

<P>(w)

<P!
2
>/20

N(w)
N(w)

prec

Unsteady GATE: 16 km x 16 km (analysis) grid

P(w)

prec > 
0.5 mm/hr



Unsteady GATE: 16 km x 16 km (analysis) grid

P(w):  T= 267 to 268 K
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Unsteady GATE: 16 km x 16 km (analysis) grid

P(w):  T= 268 to 269 K
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Unsteady GATE: 16 km x 16 km (analysis) grid

P(w):  T= 269 to 270 K
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compare CRM results for 
various CRM configurations
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Unsteady GATE: 1 km x 1 km (native) grid
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Steady GATE: 1 km x 1 km (native) grid

<P>(w)
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Steady GATE: 4 km x 4 km (native) grid

<P>(w)
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Steady GATE: (2D 256 cols) 4 km (native) grid

<P>(w)
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Steady GATE: (2D 32 cols) 4 km (native) grid
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1. Which observed features are evident? 

a. Increase of P beyond a critical PW. 

b. The dependence upon column T. 

c. Cluster size frequency.

Which are not always?

d.  A roll-off of P at high PW.

2. How do the results depend on the analysis grid size?

Results are essentially the same, except for a 
greater range of values of P,  PW, and Tcol at 
smaller grid sizes.

CRM Results



3. How do the results depend on various aspects 
of the simulations?

a. The essential features of <P>(w) are 
present in all of the simulations, including the 
MMF configuration (2D, 4-km grid size, 32 
columns).

b. Cluster size statistics for rare large 
clusters depend on domain size.

c. Time-varying forcing offers more insight 
into the underlying physics.

More CRM Results



broadly compare CRM 
results to observations

using the same 
analysis method but 
on the native high-
resolution CRM grid



Unsteady GATE: 1 km x 1 km (native) grid
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Unsteady GATE: 1 km x 1 km (native) grid 

<P>(w):  T= 268 to 269 K
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Roll-off?



Unsteady GATE: 1 km x 1 km (native) grid 

<P>(w):  T= 270 to 271 K
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All points at this T are precipitating. 
High precip rates occur at subcritical PW.



4.  How does deep convection produce the simulated (and observed) <P>(w)?

a. Updraft saturates tropospheric column: increases PW (+9 mm) and 
produces P.

b. Precip. saturates subcloud layer: increases PW (+1 mm) and P.

c. Updraft buoyancy increases Tcol, PW (+5 mm/K), and P.

More Results



Unsteady GATE: 1 km x 1 km (native) grid
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Precip Rate and Column Water Vapor are strongly coupled.
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Time scales of large 
column water vapor 

events in strong 
convection



• I identified high PW events in the time series from 
the realistically forced GATE simulation (8 days 
long).

• For these plots, each time series is for a (16 km)2 
region (256 1 km x 1 km grid points averaged), with 
values every 15 minutes.

• I defined the high-PW events using a threshold 
value (called PWcrit on the plots). 

• I generated statistics for a range of such 
thresholds from 54 to 61 mm. 
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• Above PW=56 mm, the scalings for strong 
convection appear to be similar for any PWcrit 
chosen. The statistics plotted suggest that this is 
the case. 

• So all this comes back to the question: what 
happens at PW=56 mm (in this case)? What 
determines that value?



Conclusions

• Cloud-resolving models (stand-alone and 
embedded in GCMs) are able to reproduce 
nearly all of the observed statistics of strong 
convective precipitation over tropical oceans.

• CRMs and MMFs do not generally reproduce 
the “observed” roll-off of precipitation rate at 
large column water values. 

• Analysis of CRM results suggests that many of 
the observed features are due to the tight 
coupling between dynamics and moist 
thermodynamics in convective updrafts.


