MMF Plans* July 2009

prepared by Tom Ackerman (UW) describes plans of PNNL, UW groups

* Tentative, subject to revision

Thursday, July 30, 2009

PNNL - Steve Ghan and colleagues

Focus on the direct and indirect effect of aerosol on climate

Explicit Clouds – Parameterized Pollutants

Compute cloud properties with CRM in MMF

Use grid cell mean properties from CRM to drive pollutant processing by clouds and radiation effects at large grid cell

PNNL - Steve Ghan and colleagues

Explicit Clouds – Parameterized Pollutants

- Vertical transport from mean cloud mass flux
- Aerosol activation and droplet nucleation from mean updraft velocity
- Aqueous chemistry using mean cloud fraction and in-cloud water content
- Precipitation scavenging from precip fraction and rate
- Water uptake of unactivated aerosol based on CRM RH

PNNL - Steve Ghan and colleagues

Model components

- SAM
- Morrison double-moment cloud microphysics
- Golaz and Larson higher-order turbulence closure
- Modal double-moment aerosol microphysics

Run length

It is a second secon

- Focus on improving MMF cloud simulations
- Low clouds
 - Increased resolution
 - Adaptive vertical grid
 - Turbulence?
- Convective clouds
 - SAM with Morrison microphysics (SAM-M?)

Can we use MMF to answer questions about cloud feedbacks and climate sensitivity?

Low clouds

Will better resolution / physics enable MMF to produce higher low-cloud fraction and lower low-cloud optical depths?

Convective clouds

Will improved microphysics reduce convective cloud amount and optical depth?

- Low clouds increased resolution
 - In conjunction with John Helly and Marat K.
 - Allocated time on Purdue supercomputer
 - Starting runs next month
 - CRM at 250 m; duration of 3 months
 - Plans to do CRM at 125 m

Low clouds – adaptive grid

- Marchand adaptive grid model
- Tested for several GCSS low cloud cases
- Additional development required for generalized use in MMF (6 to 12 months)

Low clouds – turbulence

PNNL model with Golaz-Larson turbulence closure can be used to test impact on low clouds

Convective clouds

- Developing collaboration with Hugh Morrison
- Carry out a set of 2D/3D simulations with SAM-M for existing cases -
 - ARM Summer SGP case 9(run/ being analyzed)
 - Other possibilities KWAJEX, TWP–ICE
- Adopt configuration for MMF and test impact on cloud amount and optical thickness in convective regions

Diagnostics

 Cloud diagnostics available for MMF
 Standard TOA radiation budget information
 CloudSat radar simulator
 MISR and ISCCP simulators

 Joint histograms of optical depth and cloudtop height