
Background
The goal of cumulus cloud parameterization is to realize changes in the 

simulated large-scale environment as a function of the collective influence of 
multiple cumulus clouds, thereby gaining computational efficiency by being able 
to operate atmospheric models at larger than cloud-resolving scale resolution.  
This is often accomplished by assumption of radiative-convective quasi-
equilibrium (QE) whereby, for example, increases in convective available 
potential energy (CAPE) brought about by upper level radiative cooling and 
surface evaporation are assumed to be in an approximate balance with CAPE-
reducing warming and drying caused by large-scale subsidence induced by 
cumulus convection.

The desire to create stochastic convective parameterizations (SCPs) has 
developed from the realization that QE-based (or otherwise diagnostic and 
deterministic) convective parameterizations fail to reproduce the full spectrum 
of convective variability, when employed in global circulation models (GCMs) 
with low spatial resolution, that is found, mainly at the small-scale, in CRM 
ensembles and observational data. For example, sufficiently large amplitude 
convective heating variations exhibit a departure from QE that may temporarily 
stop convection, thus removing constraints of QE.  Such intermittent departures 
from QE are inherent to convection, and the use of SCPs has the effect of 
interrupting QE and thereby corrects the variability of the convection.

Implementation of SCPs can be as simple as introducing a random multiplier 
to variables in a given parameterization to increase overall ensemble spread 
and improve probabilistic precipitation forecasts, but such an approach is not a 
true physical parameterization, directly linked to resolved processes. A more 
complex, yet physically based, method requires an understanding of the nature 
of the deviation from QE to be able to direct convective variability in a more 
informed manner. Stochastically adding in this previously lacking variability is a 
task which will need to take into account a number of parameters, including the 
chosen grid spacing and the time scale of the large-scale forcing.

Objectives
This study sought to explore the following:

Under QE, the convective response of the system is tightly coupled to the 
large-scale forcing applied. In a more realistic simulation, how does the 
convective response deviate from a variety of applied forcings?
Does a CRM under constant large-scale forcing match well with the 
expected QE convective response?
Xu et al. (1992) showed QE departures derived from a series of periodic (in 
time) large-scale forcings in a 2-D cloud-resolving ensemble. Would the 
same results be observed in a 3-D cloud-resolving model (CRM)?
A QE-type convective response is not expected a priori when a sample 
size (model grid box) is “small.”  How small is “small”? At what grid size is 
QE no longer a good parameterization? How does the response vary 
across different domain sizes?

Methods
To obtain a characterization of 'true' convective variability, the three-

dimensional Jung-Arakawa anelastic cloud-resolving model (CRM), which uses 
the vector vorticity equation in its dynamical core, is used in this study. 
Convective statistics were compiled using the model with a 2-km horizontal 
resolution and a 35-level stretched vertical grid (to ~20 km) in place of an 
observational dataset. A doubly periodic grid covering the domain of (256 km)2  
on an f-plane at 15 degrees North latitude was used. The simulations were 
initialized with a GATE-III sounding containing moderate vertical wind shear.

A number of simulations were performed to study the non-equilibrium, 
stochastic component of moist convective heating and drying. Following Xu et 
al. (1992), the response of the non-deterministic component of the numerical 
simulations is tested by means of 13 simulations using cyclic prescribed large-
scale forcings with periods ranging from 2 to 120 hours. As a function of time, 
the periodic forcing follows the form

where T is the period of the time variation. Each of the periodic forcing 
simulations were run to a length of 15 cycles, representing 15 realizations of 
the same event. Statistics of the composite of the cycles are heavily relied 
upon. The dependence of the simulation characteristics on the size of the 
computational domain was investigated by sub-sampling the full domain.

Additionally, 10 3.5-day simulations were run at increments of 10% of the 
maximum large-scale forcing from the periodic simulations.  

Characteristics of six variables were used to describe the convective activity: 
surface precipitation, cloud fraction, cloud mass flux through a layer, non-
precipitating condensate, and horizontal and vertical eddy kinetic energy in 
both raw and mesoscale-filtered form.
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The model is forced with prescribed large-scale advective cooling and 
moistening rates (top, left), and the sheared u-wind profile (top, right) is set as 
a constant component of the geostrophic wind to maintain wind shear. 

The average surface precipitation response to the periodic forcing (20-hour 
shown) is denoted by the black curve in the bottom panel. Note that due to the 
relatively short period of the forcing that the convective response tends to lag 
the forcing. Also, the response has some scatter deviating from a smooth 
response.  These features agree, principally, with the results of Xu et al. (1992).
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In each of the panels above, the domain-averaged surface precipitation is 
shown. The number in the title of each panel denotes tens of a percent of the 
prescribed large-scale forcing shown in the previous box. When the model is 
run at constant forcing, the response is closer to QE than for the case of 
variable forcing.

In fact, the mean domain-averaged surface precipitation equilibrium 
response increases linearly with increasing constant forcing. Standard 
deviations of the same parameter also increase with increasing forcing, and as 
the figure on the right shows, the variability of the forcing scales with the mean 
convective response. This observation is important to note in development of a 
stochastic convective parameterization.
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The thick solid black line in the plots above represents the maximum of the 
precipitation response to the prescribed forcing.

The variability around QE is itself variable with dependencies on multiple 
parameters. It varies most strongly with changes in the size of the CRM 
computational domain (i.e. grid size in a GCM). It also varies strongly with forcing, as 
expected, and to a lesser extent with changes in the forcing period length.

Variation with Period Length and Domain Size
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By compositing the 15 cycles shown in the box to the left, most of the non-QE scatter-like response can be averaged out, as shown by the solid black curves in the above 
figures. Each of the plots on the left is a composite for a different length periodic forcing. As the forcing period decreases, the response is more out of phase with the forcing in a 
relative sense, but in an absolute sense, the forcing tends to lead the response by ~80 minutes. For a short period forcing, it is difficult for the convection to keep pace. Though it is 
difficult to see here, the variability of the response about the mean tends to decrease slightly with increasing length of the forcing period.

On the right are composites of the cloud mass flux response through the 3-km level for various subsections of the domain for a forcing with 30-hour periodicity. As in the previous 
case, the response lags the forcing by ~80 minutes. Here is seen a tendency for variability  of the convective response to increase with decreasing domain size. For this variable, the 
change in variability with domain size appears gradual, with a possible step between 1/16th of the 256 by 256 km domain and a quarter of the domain. In the case of the precipitation 
response, there is a very sharp shift in the variability of the convective response between one-half of the total domain and the total domain.
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Forcing leads Cloud Mass Flux max by: 80 minutes (4.44 % of the forcing period)

Half Domain

0 5 10 15 20 25 30

Time [hr]

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

C
lo

u
d
 M

a
s
s
 F

lu
x
 [
k
g
 m

-2

 s
-1

]

Forcing leads Cloud Mass Flux max by: 80 minutes (4.44 % of the forcing period)

Quarter Domain
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Forcing leads Cloud Mass Flux max by: 80 minutes (4.44 % of the forcing period)

1/16th Domain
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Forcing leads Cloud Mass Flux max by: 80 minutes (4.44 % of the forcing period)

1/64th Domain
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Forcing leads Cloud Mass Flux max by: 80 minutes (4.44 % of the forcing period)

1/256th Domain
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Forcing leads Cloud Mass Flux max by: 80 minutes (4.44 % of the forcing period)

Forcing Period: 2 hours
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Forcing leads Precip max by: 60 minutes (50.00 % of the forcing period)

Forcing Period: 16 hours
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Forcing leads Precip max by: 80 minutes (8.33 % of the forcing period)

Forcing Period: 8 hours
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Forcing leads Precip max by: 80 minutes (16.67 % of the forcing period)

Forcing Period: 30 hours
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Forcing leads Precip max by: 80 minutes (4.44 % of the forcing period)

Forcing Period: 60 hours
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Forcing leads Precip max by: 80 minutes (2.22 % of the forcing period)

Forcing Period: 120 hours
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Forcing leads Precip max by: 70 minutes (0.97 % of the forcing period)

Below are a sample of results from the calculation of the correlation between four 
different convective response variables and the normalized forcing. Shown are data 
calculated on the full domain for forcing period lengths of 4 and 60 hours. An 
important trend to note that holds across all period lengths tested is that the 
correlation coefficient squared improves dramatically for surface precipitation and 
vertical mass flux responses. Correlations for cloud fraction and non-precipitating 
condensate do not strengthen or even weaken. Part of the reason for this involves 
the fact that for longer period forcings, these variables begin to lead the forcing as 
can be ascertained from the hysteresis loop form that the scatter plots create. 

Correlation Analysis
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Differences Between Increasing/Decreasing Forcing

MSE=Moist Static Energy,    SMSE=Saturated Moist Static Energy
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Forcing Period = 60 hr
Moisture Profile Difference (up - down)
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Forcing Period = 60 hr
MSE Profile Difference (up - down)
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Forcing Period = 60 hr
SMSE Profile Difference (up - down)
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Forcing Period = 6 hr
Temperature Profile Difference (up - down)
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