Predicting global atmospheric ice nuclei distributions and their impacts on climate

P. J. DeMott, A. J. Prenni, , X. Liu, M. D. Petters, <u>S. M Kreidenweis</u>, T. Eidhammer, C. H. Twohy, M. S. Richardson, and D. C. Rogers

Acknowledgments: DOE-ARM (Grant No. DE-FG02-09ER64772), NASA-MAP (Grant NNG06GB60G), NASA New Investigator Program, DOE Climate Change Prediction Program, NSF (various), CIRA (CLEX-10)

Approach

Approach

Real-time atmospheric measurement of IN - Continuous flow

inertial impactor removes particles larger than 1.5 µm

supersaturated region all aerosols activate into cloud droplets

some fraction of droplets freezes forming a mixed phase cloud

evaporation section deactivating liquid droplets

optical detection of ice crystals and impaction for chemical TEM analysis

CMMAP Meeting

diffusion chamber (CFDC)

Total residence time ~6s

temperature -6 < T < -40°C

IN that we measure **DO** represent (primary) ice concentrations in clouds

Ice nuclei concentrations over several projects (10-30 min. averages)

[DeMott et al., 2009]

Ice nuclei concentrations over several projects (10-30 min. averages)

[DeMott et al., 2009]

IN trend with aerosol concentrations when stratified by **size** and **temperature**

DeMott et al. (2009)

IN trend with aerosol concentrations when stratified by **size** and **temperature**

DeMott et al. (2009)

IN trend with aerosol concentrations when stratified by **size** and **temperature**

DeMott et al. (2009)

Ice nucleation parameterizations

• Meyers et al. (1992): $n_{in} = \exp(12.96(S_i-1) - 0.639)$ (no links to aerosol properties)

Ice supersaturation dependence only

• Phillips et al. (2008): (surface area, **composition**, S_i, T)

$$n_{IN,X} = \alpha_X H_X (S_{i,v}, T) \not \in (T) \begin{pmatrix} \frac{n_{IN,1.5,*}(T, S_{i,v})}{\Omega_{X,1.5,*}} \\ \uparrow & \uparrow & \uparrow \\ Lab \text{ based corrections} & Scaling to "baseline" \\ IN \text{ conc. and sfc. area} \end{pmatrix}$$

• **DeMott et al. (2009):** $n_{IN,T_{k}} = a(273.16 - T_{k})^{3.6434} (n_{aer,0.5})^{b(T_{k})}$ $(T, n_{aer} > 0.5 \mu m diameter)$

July 2009

Regional impacts – Arctic stratus single column global model (SCAM3)

Global model (CAM3) 5-year simulations, annual averages

Summary

- IN measurements relate directly to first ice formation (clear from wave cloud studies, other studies where secondary ice processes can be separated)
 → important for predicting phase in many clouds!
- IN concentrations in mixed-phase cloud T regime can be related to the number concentrations of particles larger than ~0.5 μm

 \rightarrow useful in models that carry some information on particle size, eventually particle type

 Global model simulation sensitivity to IN formulation is quite strong

 \rightarrow our new parameterization yields more water clouds and less ice, especially in Arctic & midlatitude storm tracks

Future work

- For CMMAP, implement the parameterization into the SAM model
 - Case studies for different locations
 - Use of CloudSat simulator to compare with obs
- Implementation in the MMF
 - Once aerosols are included!