

Cloud Organization associated with frontal convection in Midlatitude Cyclones

<u>Eric Tromeur</u> and William B. Rossow NOAA/CREST at the City College of New York Remote Sensing of Climate Group

Seventh CMMAP Team Meeting, Fort Collins, USA, 28-30 July 2009

MAP Climatology of Midlatitude Storminess (MCMS) Project

Goal of this project

Provide a detailed 40 year climatology of the areas that come under cyclone influence at a given point in time

Most popular method

- Locating cyclones as depressions in the SLP field
- Find cyclones in space and time
- Demarcate the area of influence around them
- Bauer and Del Genio, Journal of Climate, 2006
- http://gcss-dime.giss.nasa.gov/mcms/mcms.html

Triad of cyclones off the North American eastern seaboard from the NCEP/NCAR Reanalysis

<u>Database</u>

- NCEP/NCAR Reanalysis
- Midlatitude Cyclones

- Attributed grids: closed SLP contours around a center that contain just that center
- Stormy grids: closed SLP contours that enclose multiple centers

ISCCP Cluster Analysis

Deep Cumulus	Anvil Clouds	Mid-level Clouds
Convective regime	Convective regime	Convective regime
Mid-level Clouds	Cirrus Clouds	Shallow Cumulus
Convective regime	Cirrus regime	Suppressed regime
Stratocumulus Suppressed regime	Stratocumulus Suppressed regime	

Outline

- 1. Northern and Southern Midlatitude Cyclones
- 2. Seasonal variations of cloud organization
- 3. Land / Water contrast
- 4. Tests for models

Midlatitude Cyclones (1988-1992)

Seasonal Midlatitude Cyclones per WS Groups (1988-1992)

Seasonal Midlatitude Cyclone Composites per WS Groups (1988-1992)

Water and Land Midlatitude Cyclones (1988-1992)

Northern Midlatitudes

Composites of Centers and Attributes of MidlatN Cyclones (1988-1992)

12

INTENSITY

13

11

WS3

WS6

12

12

13

40

20

11

40

20

0

13

13 11

13

12

INTENSITY

13

RFO of WS Groups

Intensites of Water and Land MidlatN Cyclones

Southern Midlatitudes

13

11

12

INTENSITY

0

11

WS1

WS4

WS7

R

Gr 20

11

11

60

€ 40

2 2 2

R 40

G 20

0

11

G2

G2

Cloud Regime

Cloud Regime

G3

G3

G4

G4

Water :

Land

12

12

12 INTENSITY

G4

RFO of WS Groups

Composites of Centers and Attributes of MidlatS Cyclones (1988-1992)

12

12

12 INTENSITY

WS2

WS5

WS8

40

20

11

60

40

20

60

40

20

0

13

13 11

13 11

RFO of each WS

Intensites of Water and Land MidlatS Cyclones

Intensites of Water and Land MidlatN Cyclones

RFO of each WS

Land / Water Midlatitude Cyclone Composites per WS Groups (1988-1992)

Tests for Models

Cloud organization in Midlatitude Cyclones

- Clouds are more shallower in the South than in the North
- Almost no Cirrus regime in the Southern Hemisphere
- RFO of Southern Mid-level Clouds increases with Intensity
- Southern Shallow cloud RFO decreases with Intensity
- Shallow clouds more frequent around the cold front in the South
- Seasonal variations: weak Summer / Winter contrast in the North
- Cloud RFO strongly dependent on Intensity of cyclones in the South

Hints for models

- Northern and Southern Midlatitude cyclones behave differently
- A step for models would be to look at the cloud organization

Things to do ...

➢ Sort cyclones by size, location, …

Construct lifecycle composites of midlatitude cyclones

Examine how the atmosphere-to-surface and within-atmosphere exchanges of energy change

Charaterize the structures of the clouds via vertical profiles from CloudSat / Calipso data

Investigate influence of precipitation phase on cyclone development