Modeling of Heat Induced Tropical Circulation

By: Gabriel J. Williams, Jr.

About Myself

- Raised in Atlanta, GA via New York City
- 2nd Year PhD Student in Atmospheric Science at Colorado State University under Dr. W. Schubert.
- Research Interests: Tropical Cyclone Intensity, Tropical Circulation Modeling, and Geophysical Fluid Dynamics
- Other Interests: Playing Music; Studying Economic Theory and Political Theory; Cooking; Playing and Watching Baseball

Motivation

- Over recent decades, interest in tropical meteorology has increased due to its impact in extratropical weather forecasting.
- Also, as more forecasting centers used global models for numerical weather prediction and climate studies, it became apparent that the tropical atmosphere was difficult to simulate.
- Improving the models for tropical atmospheric motion and circulation will also give the groundwork for improving global climate models as well.

Steady State Heat-Induced Tropical Circulation

- \Box Gill (1980) constructed a model to explain the basic features of the response of the tropical atmosphere to diabatic heating.
- □ Much of the heating in the tropics is found over Africa, South America, and Indonesian region, which raises questions on the result of heating a limited area centered near the equator on tropical circulation.
- \Box If heating is applied to a steady-state atmosphere and is small enough to use linear theory, then the response can be modeled in terms of equatorially trapped waves.
- The heating would create eastward Kelvin waves and slowly moving westward planetary waves, leading to an east-west asymmetry in tropical circulation.

The Basic Model

- Using linear theory, the tropical atmosphere can be modeled using the shallow water equations. To study the response to steady forces, dissipative processes are included by a small parameter ε.
- \Box To solve, we expand the variables q, r, v, Q in terms of parabolic cylinder functions $D_n(y)$ to produce the steady state equations:

$$
\begin{aligned}\n&\text{For } n \geq 0, \ \mathbb{I}_{q_0} \mathbb{I}_{\frac{dq_0}{dx}} = -Q_0 \\
&\text{for } n \geq 0, \ \mathbb{I}_{q_N} \mathbb{I}_{\frac{dq_{n\text{all}}}{dx}} - Q_0 \\
&\text{for } q = p \mathbb{I}_{\mathcal{U}} \\
&
$$

- For
$$
n \ge 1
$$
, $\Pr_{n=1} \Box \frac{dr_{n-1}}{dx} - nv_n = -Q_{n-1}$

– For n ≥ 1,

 \Box \Box \Box

Case 1: Symmetric Forcing

- \Box Here, $Q(x,y) = F(x)D_0(y)$ where $F(x) = cos(kx)$ in the heating region and $F(x) = 0$ elsewhere.
- \Box The first node (n=0) represents a damped Kelvin wave
- \Box If forcing is taken over the Indonesian area, this represents the Walker circulation
- \Box The second node (n=1) represents a damped planetary wave, moving at 1/3 of the speed of the Kelvin wave

Case 2: Asymmetric Forcing

- Here, $Q(x,y) = F(x)D_1(y)$ where $F(x) = cos(kx)$ in the heating region and $F(x) = 0$ elsewhere.
- The n=0 mode corresponds to a mixed planetary-gravity wave.
- Because long mixed waved don't propagate, there is no effect to the east of the forcing region.
- The n=2 mode corresponds to a long rapidly decaying planetary wave.

The General Solution

- East of the heating region, the flow is due entirely to the symmetric forcing.
- West of the heating region, westerly inflow is concentrated in the heating region, while easterly flow is found south of the equator.
- A strong low to the west of the heating region with a high in the Southern hemisphere.

Further Questions

- Other effects that have been studied are:
	- The effect of a zonal mean wind on heat induced tropical circulation
	- The time scale of geostrophic adjustment on heat induced tropical circulation
	- The nonlinear effects on heat induced tropical circulation