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When I am not struggling to understand the Atmosphere 
I like to....

carve pumpkins with beards

read

hike



Jan 2003 Mean 925 
hPa Wind Over 
South America

‣ NCEP-DOE 
Reanalysis II Data

‣ T62 Resolution

‣ Shading indicates 
topography

‣ Red outline marks 
the La Plata river 
basin

‣ Adapted from Tarasova et 
al. (2006) and Noguès-
Paegle et al. (2001) thanks 
to B. McNoldy



‣ Note the strong 
cyclonic flow 
centered over the 
Andes

‣ Involves 2 low 
level jets:

• South American 
Low-Level Jet 
(SALLJ)

• Coastal LLJ

Jan 2003 Mean 925 
hPa Wind Over 
South America



Data from SALLJEX:   Vera et al. (2006)

•Large Vertical 
and horizontal 
shear
•Lower 
troposphere
•Wind speed 
often maximizes 
at night

‣ Cross Section Through the SALLJ on 6 Feb 2003

‣ Low-Level Jets play a major role in the global 
hydrologic cycle

What is an Atmospheric Low-Level Jet?



Research Hypothesis

‣ Heating of the lower surface is an important mechanism that 
contributes to the life-cycle of LLJs

‣ Jets on opposite sides of the mountains are part of a single 
response to potential vorticity forcing that results from heating

‣ Forcing through heated orography strengthens the basic 
cyclonic flow around the Rockies and Andes



Potential Vorticity

‣ Why is PV a useful variable?

• It carries all the necessary dynamical information on the balanced wind 
and mass fields

‣ The usefulness of PV rests on two fundamental components
• Conservation of PV (Rossby 1939,1940; Ertel 1942)

• The invertibility principle (Eliassen and Kleinschmidt 1957)

‣ See Hoskins, McIntyre, and Robertson, 1985 for more discussion

‣ The evolution of potential vorticity on isentropic surfaces leads 
to insight into • Cutoff cyclones

• Blocking anticyclones
• Rossby wave propagation



Deriving a PV Invertibility Principle
‣ Modeling assumptions:

• compressible, stratified fluid on an f-plane

• inviscid, hydrostatic, y-independent motions

• Geostrophic balance

where

‣ Far-field flow vanishes:

‣ Far-field PV:

‣ Potential vorticity (PV):



‣ Define the buoyancy 
frequency:

‣ The PV ratio then leads to:

Deriving a PV Invertibility Principle

where the Exner function is given by



‣ Additional assumptions:

• symmetry of           and          about 

• geostrophic and hydrostatic balance

• PV is uniform on each isentropic surface above the massless layer

• Density is everywhere equal to the far field density 

‣ Including topography:

• geopotential along topography:  

• potential temperature along topography:

• boundary of massless layer on a theta surface:

‣ Massless layer:

φS(x)

θS(x)

xS(θ)

x = 0

θB < θ < θS(x)

φS(x) θS(x)

Deriving a PV Invertibility Principle
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Simple Analytical Solutions

‣ Topography:
• mountain of height      and width

‣ Simple reference state profile:
•  Buoyancy frequency is inversely proportional to θ

H a



‣ Balanced wind and mass fields are forced in two ways

Special Case
• Flat topography
• No variation of     along bottom boundary
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Isentropic Mountain with H = 1000 m
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Isentropic Mountain with H = 1700 m
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Numerical Solutions

• Purely analytic solutions are in closed form only for the 
case of an isentropic mountain

• For cases including a heated lower boundary, solutions 
can only be found with an iterative procedure

• Allows for more general cases: complex orography and 
heating, unapproximated density



Numerical Results for Three Simple Cases

• Solutions are computed for cases with PV 
anomalies in the massless layer

• These cases are representative of: 
~ gently sloping orography
~ temperature gradients along flat boundaries
~ large heated orography

Isentropic Ridge Flat Heated Lower Surface Heated Ridge

• For cases including a heated lower boundary, solutions can 
only be found with an iterative procedure



Comparison of Analytic and Finite Difference 
solutions for Isentropic mountain

Greens function solution Finite difference approximation

• General agreement is encouraging

• Density is assumed to only depend on    at leftθ



Isentropic Mountain

‣ Identical wind field plotted two 
different ways

‣ All computations made in      
space, then interpolated to       
space

(x, θ)−
(x, p)−

‣ Note absence of massless layer
vmax = 15.4m/s

H = 1800m

‣ PV is conserved

Compressed isentropes require           
to decrease while stretched isentropes 

require             to increase

∂v/∂x

∂v/∂x



Heated Flat Lower Boundary

∂p/∂θ
‣ In the massless layer the 

pseudodensity            vanishes

‣ Note presence of massless layer

‣ Temperature anomaly along lower 
surface is 6 K

vmax = 12.7 m/s

‣ Cyclonic flow, massless layer is 
indicated by black object along 
lower surface (top) and thick line 
(bottom)



‣ The SALLJ and Coastal LLJ are not separate entities

‣ The PV invertibility principle has been solved in isentropic 
coordinates with a lower boundary that includes mountains 

‣ We have shown that a balanced response to heated 
topography is an important contributing factor for LLJs

‣ For a sufficiently strong temperature anomaly, a cyclonic 
circulation will be generated

‣ Generalization of these results to the sphere and the use of 
more realistic topography will allow for more direct 
comparison with observations

Summary and Conclusions



Heated Ridge

‣ Temperature anomaly along lower 
surface is 6 K

vmax = 11.13 m/s

H = 1800 m

‣ Anti-cyclonic flow, massless layer is indicated 
by black object along lower surface (top) 
and thick line (bottom)



Heated Flat Lower Boundary

Anti-cyclonic flow, massless layer is indicated by 
black object along lower surface (top) and thick 

line (bottom)

vmax = 27.27m/s

‣ Temperature anomaly along lower 
surface is 12 K



Heated Ridge

Cyclonic flow, massless layer is indicated by black 
object along lower surface (top) and thick line 

(bottom)

‣ Flow is opposite sign as that for 
the heated ridge with a 
temperature anomaly of 6 K

vmax = 10.3m/s H = 1800m

‣ Temperature anomaly along lower 
surface is 12 K
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