Sensitivity of a Simulated Deep Convective Storm to WRF Microphysical Schemes and Horizontal Resolution

Annareli Morales CMMAP Student Colloquium July 31, 2013

Cecille Villanueva-Birriel and Hugh Morrison

Motivation

- Uncertainties remain in operational forecasts and climate simulations due to choice of microphysics parameterization and resolution
- Past studies have shown
 - Microphysics can impact surface precipitation and cold pool development (Bryan and Morrison 2012)
 - Resolution can impact updraft strength (Bryan et al.
 2003) and convective mass flux (Petch and Gray 2001)

11 June 2010

Ensemble member forecasts range from very good...

Courtesy of Russ Schumacher (Schumacher et al. 2013)

11 June 2010 ...to not so good

24-30 hour forecast (init 00Z/10) Stage IV analysis, 6 hr ending 06Z/11 June Member s4m15_arw mm 200.0 100.0 50.0 ß 25.0 10.0 5.0 2.5 1.0

Courtesy of Russ Schumacher (Schumacher et al. 2013)

Research Objective

Understand the sensitivity of a deep convective storm simulation to changes in both microphysics parameterization and horizontal resolution

- Variety of resolutions, including high resolutions
- Different microphysical schemes
- Comparison of results with different atmospheric profile

Storm Simulation

- Advanced Research WRF Model (ARW) version 3.3.1
 - 3D non-hydrostatic meteorological regional model
- Idealized, single-cell deep convective storm
 - At "convection-permitting" scale (no convective parameterization)
 - Low vertical wind shear
 - Everything turned off (no radiative heating, surface fluxes) to only focus on effects due to microphysics
 - 90 minute simulation

Markowski and Richardson 2010

Test Setup

Resolution	2-Moment	"Mix"	1-Moment	
	Morrison	Thompson	WSM6	Morrison
2000 m	Х	Х	Х	
1000 m	Х	Х	Х	X
250 m	Х	Х	Х	Х
125 m	Х	Х	Х	

RESULTS

Structure varies with resolution

Structure varies with scheme

Surface precipitation

- WSM6 has lower surface precipitation across all grid spacings
 - Due to higher
 evaporation
 - Partly due to N₀
 parameter set at
 relatively large value
 (shown by MOR 1M test)
 - Large N₀ → more numerous, smaller drops that evaporate faster

Values Courtesy of Cecille Villanueva-Birriel

Sensitivity to sounding

- Surface precipitation very sensitive to environmental sounding ullet
 - Standard sounding: CAPE ~1000 J/kg
 - Modified sounding: CAPE~4000 J/kg

Standard vs. Modified Sounding

Values Courtesy of Cecille Villanueva-Birriel

Conclusions

Thank you! Questions?

- Both microphysics and horizontal grid spacing sensitivities are important
- Microphysics differences are consistent across different resolutions
 - WSM6 has lowest surface rain fall across grid spacings
- Sensitivity of surface precipitation to horizontal grid spacing is VERY sensitive to the environmental sounding

Simulation-Storm Evolution

14

Master Table-Standard Sounding

Resolution (km)	Average Total Condensation (mm/h)	Average Rain Rate (mm/h)	Precipitation Efficiency (%)	Average Total Evaporation (mm/h)
Morrison				
2	0.2233	0.1921	86.03	0.1502
1	0.2327	0.2104	90.41	0.1713
0.25	0.4017	0.2666	66.38	0.2619
0.125	0.3360	0.2406	71.59	0.2271
Thompson				
2	0.2084	0.1502	72.08	0.1530
1	0.2093	0.1542	73.69	0.1669
0.25	0.3289	0.1922	58.42	0.2244
0.125	0.3121	0.1875	60.08	0.2089
WSM6				
2	0.2237	0.1102	49.29	0.2834
1	0.2136	0.1095	51.25	0.3095
0.25	0.3098	0.1354	43.71	0.3737
0.125	0.3135	0.1340	42.73	0.3737
Morrison 1M				
1	0.2654	0.1600	60.29	0.2190
0.25	0.4067	0.2055	50.52	0.3156