Thermodynamics, Buoyancy, and Vertical Motion

Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic "Lapse Rates" Dry and Moist Convective Motions

DEDMANENT GASES			VADIADIE CACES			
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)
Nitrogen	N.	78.05	Water vapor	H.O	0 to 4	
Oxygen	0,	20.95	Carbon dioxide	CO.	0.037	374*
Argon	Ar	0.93	Methane	CH.	0.00017	1.7
Neon	Ne	0.0018	Nitrous oxide	NO	0.00003	0.3
Helium	He	0.0005	Ozone	0,	0.000004	0.04+
Hydrogen	H ₂	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.13
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002
on an	values al altitudes	between 11 km and 30 km are	atkiat 5 to 12 ppm.			

What is Air Temperature?

- Temperature is a measure of the kinetic (motion) energy of air molecules - K.E. = $\frac{1}{2}$ mv²
 - m = mass, v = velocity
 - So...temperature is a measure of air molecule speed
- The sensation of warmth is created by air molecules striking and bouncing off your skin surface
 The warmer it is, the faster molecules move in a random fashion and the more collisions with your skin per unit time

How do we measure temperature?

- Conventional thermometry

 Liquid in glass.
- Electronic thermometers - Measures resistance in a metal such as nickel.
- Remote sensing using radiation emitted by the air and surface (by satellites or by you in this class!).

What is the coldest possible temperature? Why?

Atmospheric Soundings

Helium-filled weather balloons are released from over 1000 locations around the world every 12 hours (some places more often)

These document temperature, pressure, humidity, and winds aloft

Pressure

- Pressure is defined as a force applied per unit area
- The weight of air is a force, equal to the mass m times the acceleration due to gravity g
- Molecules bumping into an object also create a force on that object, or on one another
- Air pressure results from the weight of the entire overlying column of air!

• Sample 2 is more

Sample 1	
Mass = .52 kg	
Volume = 2 x 1 x 1 = 2 m ³	2
Density = .26 $\frac{\text{kg}}{\text{m}^3}$	
	.
Sample 2	1
Mass = .52 kg	
Volume = 1 x 1 x 1	1
Density = .52 $\frac{\text{kg}}{\text{m}^3}$	
	Mass
Ľ	Volume

Density is the Key to Buoyancy!

Changes in density drive vertical motion in the atmosphere and ocean.

• Lower density air rises when it is surrounded by denser air.

- Think of a hollow plastic ball submerged under water. What happens when you release it?

Buoyancy

- An air parcel rises in the atmosphere when it's density is less than its surroundings
- Let ρ_{env} be the density of the environment. From the Equation of State/Ideal Gas Law
- $\rho_{env} = P/RT_{env}$ Let ρ_{parcel} be the density of an air parcel. Then $\rho_{parcel} = P/RT_{parcel}$
- · Since both the parcel and the environment at the same height are at the same pressure
 - when T_{parcel} > T_{env} when T_{parcel} < T_{env} $\rho_{parcel} < \rho_{env}$ (positive buoyancy)
- ρ_{parcel} > ρ_{env} (negative buoyancy)

Heat Transfer Processes

- Radiation The transfer of heat by radiation does not require contact between the bodies exchanging heat, nor does it require a fluid between them.
- Conduction molecules transfer energy by colliding with one another.
- Convection fluid moves from one place to another,
- carrying it's heat energy with it. In atmospheric science, convection is usually associated with vertical movement of the fluid (air or water).
- Advection is the horizontal component of the classical meaning of convection.

Why is stability important?

- Vertical motions in the atmosphere are a critical part of energy transport and strongly influence the hydrologic cycle
- Without vertical motion, there would be no precipitation, no mixing of pollutants away from ground level weather as we know it would simply not exist!
- There are two types of vertical motion:

 <u>forced motion</u> such as forcing air up over a hill, over colder air, or from horizontal convergence
 <u>buyoart motion</u> in which the air rises because it is less dense than its surroundings stability is especially important here

"Lapse Rate"

- The lapse rate is the change of temperature with height in the atmosphere
- Environmental Lapse Rate
 - The actual vertical profile of temperature
 - (e.g., would be measured with a weather balloon)
- Dry Adiabatic Lapse Rate
 - The change of temperature that an air parcel would experience when it is displaced vertically with no condensation or heat exchange

Trading Height for Heat (cont'd) • Suppose a parcel exchanges no energy with its surroundings ... we call this state adiabatic, meaning, "not gaining or losing energy" $0 = c_p \Delta T + g \Delta z$ $c_p \Delta T = -g \Delta z$ $\frac{\Delta T}{\Delta z} = -\frac{g}{c_p} = -\frac{(9.81 m s^{-2})}{(1004 J K^{-1} k g^{-1})} = -9.8 K k m^{-1}$ "Dry adiabatic lapse rate"

Absolute instability

- The atmosphere is absolutely unstable if the environmental lapse rate exceeds the moist and dry adiabatic lapse rates
- This situation is not long-lived
 - Usually results from surface heating and is confined to a shallow layer near the surface
 - Vertical mixing can eliminate it
- Mixing results in a dry adiabatic lapse rate in the mixed layer, unless condensation (cloud formation) occurs (in which case it is moist adiabatic)

A saturated rising air parcel cools less than an unsaturated parcel

- If a rising air parcel becomes saturated condensation occurs
- · Condensation warms the air parcel due to the release of latent heat
- So, a rising parcel cools less if it is saturated
- Define a moist adiabatic lapse rate ~ 6 C/1000 m
 - Not constant (varies from ~ 3-9 C)
 depends on T and P

