Water Vapor, Clouds, and Precipitation

Water vapor in the air Saturation and nucleation of droplets Cloud formation and moist convection Droplet growth and raindrops Mixed phase clouds (vapor, droplets, and ice)

Why does it take so much energy to evaporate water?

- In the liquid state, adjacent water molecules attract one another
	- "-" charge on O attracted to "+" charge on H
	- we call this hydrogen bonding
- This same hydrogen bond accounts for surface tension on a free water surface – column of water "sticks together"

Sublimation – evaporate ice directly to water vapor

Take one gram of ice at zero degrees centigrade

Energy required to change the phase of one gram of ice to vapor:

Add 80 calories to melt the ice Add 100 calories to raise the temperature to 100 degrees C Add 540 calories to evaporate the liquid

Total Energy **ADDED** for sublimation of 1 gram of ice:

80 + 100 + 540 = 720 calories

Deposition – convert vapor directly to ice

Take one gram of water vapor at 100 degrees Centigrade

Release 540 calories to condense Release 100 calories to cool temperature of liquid to °C Release 80 calories to freeze water

Total energy **RELEASED** for deposition of 1 gram of ice

540 + 100 + 80 = 720 calories

Water vapor pressure

- Molecules in an air parcel all contribute to pressure
- Each subset of molecules (e.g., N_2 , O_2 , H_2O) exerts a partial pressure
- The VAPOR PRESSURE, e, is the pressure exerted by water vapor molecules in the air – similar to atmospheric pressure, but due only to the water
	- vapor molecules – often expressed in mbar (2-30 mbar common at surface)

Water molecules move between the liquid and gas

- When the rate of water molecules entering the liquid equals the rate leaving the liquid, we have equilibrium
	- The air is said to be saturated with
	- water vapor at this point – Equilibrium does not
	- mean no exchange occurs

How do we express the amount of water vapor in an air parcel?

- Absolute humidity
	- mass of water vapor/volume of air (g/m3)
	- changes when air parcel volume changes
- Specific humidity – mass of water vapor/mass of air (g/kg)
- Mixing ratio
- mass of water vapor/mass of dry air (g/kg)
- Specific humidity and mixing ratio remain constant as long as water vapor is not added/removed to/from air parcel
- Dew point temperature

Expressing the water vapor pressure

- Relative Humidity (RH) is ratio of actual vapor pressure to saturation vapor pressure
	- 100 * e/e_s
	- Range: 0-100% (+)
	- Air with RH > 100% is supersaturated
- RH can be changed by
	- Changes in water vapor content, e
	- Changes in temperature, which alter e_S

Why is the southwest coast of the US hot and dry while the Gulf coast is hot and moist?

- Both are adjacent to large bodies of water
- Both experience onshore wind flow on a regular basis
- Why does one have a desert like climate and the other ample moisture and rainfall?

Water vapor is distributed throughout the atmosphere

- Generally largest amounts are found close to the surface, decreasing aloft
	- Closest to the source evaporation from ground, plants, lakes and ocean
	- Warmer air can hold more water vapor than colder air

Condensation

- Condensation is the phase transformation of water vapor to liquid water
- Water does not easily condense without a surface present
	- Vegetation, soil, buildings provide surface for dew and frost formation
	- Particles act as sites for cloud and fog drop formation

Frost

- If the temperature is
below freezing, the dew
point is called the frost oint
- If the surface temperature falls below the frost point water vapor is deposited directly as ice crystals – deposition
- The resulting crystals are known as frost, hoarfrost, or white frost

Cloud and fog drop formation

- If the air temperature cools below the dew point (RH > 100%), water vapor will tend to condense and form cloud/fog drops
- Drop formation occurs on particles known as cloud condensation nuclei (CCN)
- The most effective CCN are water soluble.
- Without particles clouds would not form in the atmosphere
	- RH of several hundred percent required for pure water drop formation

Steps in Cloud/Fog Formation

- Air parcel cools causing RH to increase – Radiative cooling at surface (fog)
	- Expansion in rising parcel (cloud)
- \cdot CCN (tenths of μ m) take up water vapor as RH increases
	- Depends on particle size and composition
- IF RH exceeds critical value, drops are activated and grow readily into cloud drops (10's of μ m)

Where do CCN come from?

- Not all atmospheric particles are cloud condensation nuclei (CCN)
- Good CCN are hygroscopic ("like" water, in a chemical sense) • Many hygroscopic salt and acid particles are found in the atmosphere
- Natural CCN
	- Sea salt particles (NaCl)
	- Particles produced from biogenic sulfur emissions Products of vegetation burning
	-
- CCN from human activity Pollutants from fossil fuel combustion react in the atmosphere to form acids and salts
	-
	- Sulfur dioxide reacts to form particulate sulfuric acid and ammonium
- sulfate salts
- Nitrogen oxides react to form gaseous nitric acid which can combine with ammonia to form ammonium nitrate particles

Fair weather cumulus cloud development

- Air rises due to surface heating
- RH rises as rising parcel cools
- Cloud forms at RH ~ 100% • Rising is strongly suppressed at base of subsidence inversion produced from sinking motion associated with

high pressure system • Sinking air is found between cloud elements

Determining convective cloud top

- **Cloud top is defined by the upper limit to air parcel rise**
- **The area between the dry/moist adiabatic lapse rate, showing an air parcel's temperature during ascent, and the environmental lapse rate, can be divided into two parts**
	- A positive acceleration part where the parcel is warmer than the environment
	- A negative acceleration part where the parcel is colder than the environment
- **The approximate cloud top height will be that altitude where the negative acceleration area is equal to the positive acceleration area**

Lenticular clouds

- Stable air flowing over a mountain range often forms a series of waves Think of water waves formed downstream of a submerged boulder
-
- Air cools during rising portion of wave and warms during descent
- Clouds form near peaks of wes
- A large swirling eddy forms beneath the lee wave cloud
- Observed in formation of
rotor cloud
– Very dangerous for aircraft

Changing cloud forms

- Differential heating/cooling of top and bottom of a continuous cloud layer can cause it to break up into smaller cloud elements
	- Cloud top absorbs solar
radiation but cools more
quickly by radiative cooling
	- Bottom of cloud warms by net absorption of IR radiation from below
	- The result is that the layer within the cloud becomes less stable and convection may ensue

Cloud Classification

- Clouds are categorized by their height, appearance and vertical development
	- High Clouds generally above 16,000 ft at middle latitudes
	- Main types **Cirrus, Cirrostratus, Cirrocumulus** – Middle Clouds – 7,000-23,000 feet
	- Main types **Altostratus, Altocumulus** – Low Clouds - below 7,000 ft
	- Main types **Stratus, stratocumulus, nimbostratus**
	- Vertically "developed" clouds (via convection) • Main types – **Cumulus, Cumulonimbus**

Scott Denning CSU CMMAP 16

Precipitation and the ice crystal process

- At mid and northern latitudes most precipitation is formed via ice crystal growth
- Supercooled cloud drops and
ice crystals coexist for -40° <
T < 0° C
- Lack of freezing nuclei to glaciate drops
- Ice crystals can grow by
	- Water vapor deposition
	- Capture of cloud drops (accretion/riming)
	- Aggregation

determines crystal s The temperature, and to some sate **Ice crystals and Thin Plates ice nuclei** 25 F to 21 F • Ice crystal shapes depend on the environmental **Holl**
 Example Columns – Temperature – Water vapor concentration **Needles** • Ice crystal formation usually involves ice nucle • Ice nuclei 14 F to 10 F – Are much less common than cloud condensation nuclei **JOY to ST** – Include some clay mineral particles,
bacteria, plant leaf detritus and ??
Freezing nuclei initiate the freezing of
water droplets between temperatures of
O°C and -40°C **Sector Plates** – Artificial ice nuclei, used for cloud seeding, include dry ice and silver iodide

Ice crystal growth by vapor deposition (Bergeron process)

• Ice binds water molecules more tightly than liquid water

– For temperatures less than 0ºC, the saturation vapor pressure over ice is LESS than the saturation vapor pressure over super-cooled water

• This leads to evaporation of water from supercooled cloud drops and deposition onto ice crystals

Ice crystal growth by accretion

• Ice crystals fall faster than cloud drops

- Crystal/drop collisions allow ice crystals to capture cloud drops The supercooled drops freeze upon contact with the ice crystal
-
- This process is known as accretion or riming
- Extreme crystal riming leads to the formation of – Graupel

– Hail

Ice crystal growth by aggregation

• Crystal/crystal collisions can lead to formation of crystal aggregates

– Crystals most likely to stick when a liquid water layer resides on the crystal surface

• Watch for large aggregates/snowflakes when temperatures are close to 0º C

Precipitation in cold clouds

- Low liquid water content promotes diffusion/deposition growth of large crystals
- High liquid water content promotes riming and formation of graupel/hail
- If the sub-cloud layer is warm, snow or graupel may melt into raindrops before reaching the surface (typical process for summer rain in Colorado)

Precipitation types

- Rain that evaporates before reaching the surface is termed *virga*
– Common in Colorado's dry climate
- Precipitation reaching the surface can take on different forms depending on the vertical temperature profile

