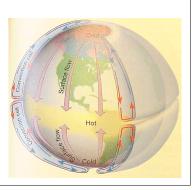

Global and Synoptic Scale Circulation Systems

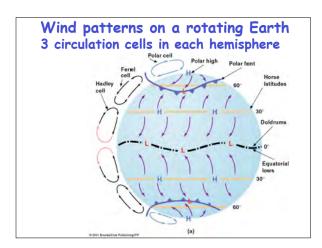
Poleward energy transport on a rotating sphere

Hadley cells and Ferrel cells

Polar vortex and midlatitude jet streams

Midlatitude cyclones as waves

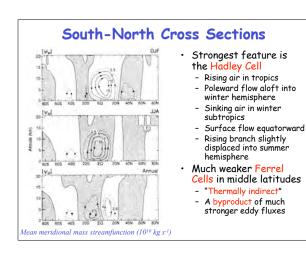


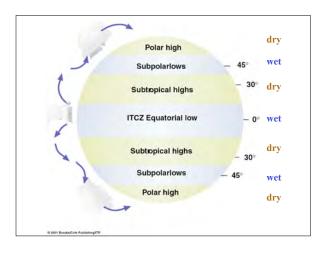


If the Earth didn't rotate, it would be easy for the flow of air to balance the energy

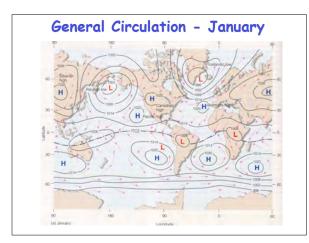
- Thermal convection leads to formation of convection cell in convection cell in
- each hemisphere • Energy transported from equator
- toward poles
 What would prevailing wind direction be over
 N. America with this flow pattern on a rotating

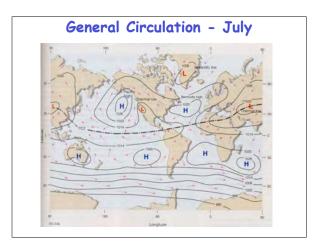
earth?





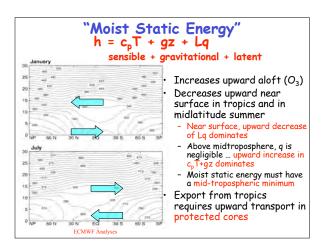
Key features of three cell model

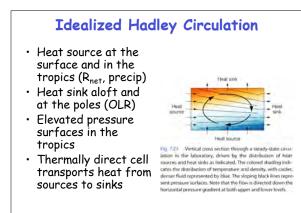

- Hadley cell (thermally direct cell)
- driven by N-5 gradient in heating
- air rises near equator and descends near 30 degrees
- explains deserts; trade winds; ITCZ
- Ferrel Cell (indirect thermal cell)
- driven by heat transports of \emph{eddies}
- air *rises near 60 degrees* and descends near 30 degrees
- explains surface westerlies from 30-60
- Weak winds found near
 - Equator (doldrums)30 degrees (horse latitudes)
- Boundary between cold polar air and mid-latitude
 - warmer air is the *polar front*

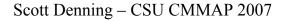

Scott Denning – CSU CMMAP 2007

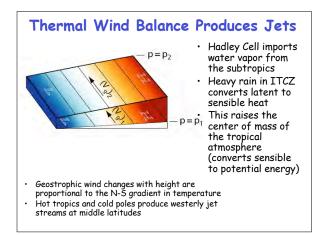
Understanding the General Circulation

- 1. Driven by differential solar heating between the equator and poles. Atmospheric general circulation acts to move heat poleward.
- 2. In Hadley cell, warmer fluid rises and moves poleward. Equator-to-pole Hadley cell is impossible in the presence of rotation
- 3. In the Northern Hemisphere, a fluid is deflected to the right as it moves; in the Southern Hemisphere, it is deflected toward the left.
 rotation produces trade winds; surface westerlies in NH; upper tropospheric jets.
- Ferrel cell is the "zonal mean" response to poleward heat and momentum fluxes by eddies. It runs backwards! Transports heat the wrong way!

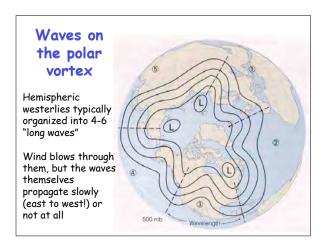


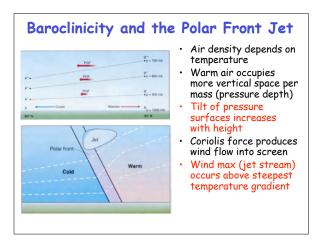

Jargon Break!

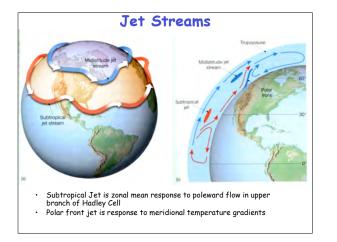

- "Zonal" means "east-west"
- "Meridional" means "north-south" (along meridians)
- MMC is the "Mean Meridional Circulation" ... zonally-averaged cross section of air flow


Energ	y in the	Global	Atmosphere	
Name	Symbol	Formula	Amount $\times 10^6$ J m ⁻²	% of total
Internal energy	IE	c,T	1800	70
Potential energy	PE	82	700	27
Latent energy	LH	La	70	2.7
Kinetic energy	KE	$\frac{1}{2}(u^2 + u^2)$	1.3	0,05
Total energy	IE + PE + LH + KE		2571	100

- Four kinds of energy ... c_vT + gz account for 97%
 KE is small but very important for moving the others around!
- Much of the energy is <u>unavailable</u> for conversion (atmosphere "holding itself up")
- Circulation responds to energy (temperature) gradients on constant pressure surfaces

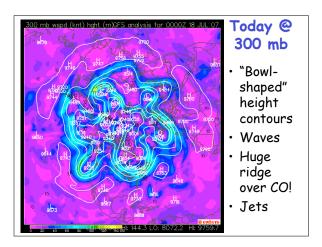


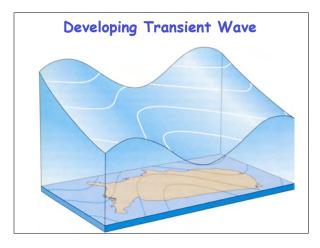


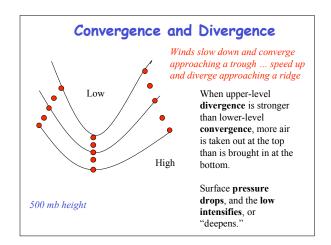

Extratropical storms are Eddies in the Jet Stream

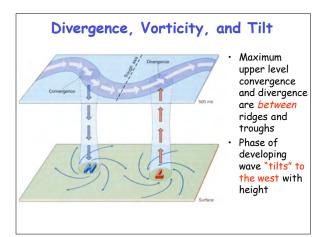
- Momentum is *transferred from the earth* to the atmosphere in the *trade wind belt*.
- Momentum is transferred from the atmosphere to the earth in the midlatitudes.
- If the earth is always trying to slow down the midlatitude westerlies, why don't they weaken and disappear over time?
- Eddies (storms) transfer momentum poleward in the upper troposphere.
- This momentum transfer weakens the Hadley circulation, but drives the Ferrel cell.

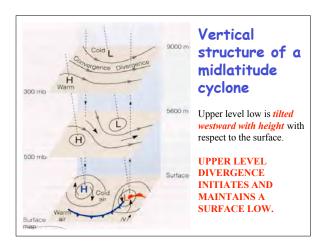






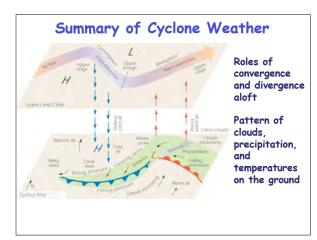


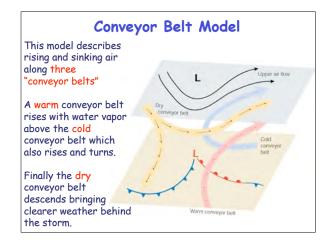


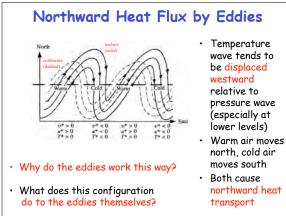

 Cyclone development: baroclinic instability (baroclinic means temperature varies on an isobaric surface) causes initial 'perturbation' to grow. occurs in the presence of strong temperature gradients. 	
Imagine a short wave trough passes overhead (<i>looking North</i>) Where will surface low develop?	1
Low DIV High	
east	

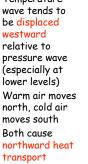
Teaching Weather and Climate

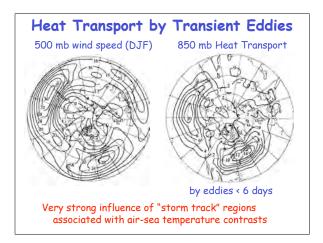
advection?	,		e cold and warm	
Will this amplif	-	11		
How about the u				
Will a more inte surface low?	ense uppe	er level low	strengthen or we	aken th
Lo)W	DIV	High	
с	ool	Low	warm	

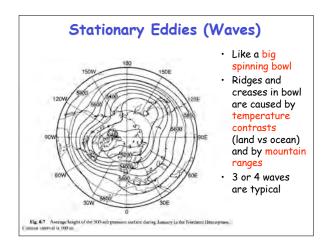




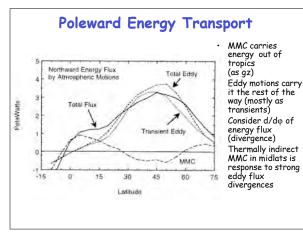


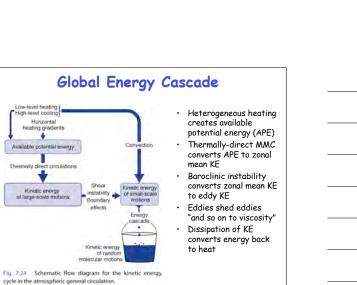

- Passing wave initiates
- Cold air undercuts warm,
- N-S mixing in cyclone eventually consumes the





Northward Heat Flux $\left[\overline{\boldsymbol{v}}\overline{T}\right] = \left[\overline{\boldsymbol{v}}\right]\left[\overline{T}\right] + \left[\overline{\boldsymbol{v}}^*\overline{T}^*\right] + \left[\overline{\boldsymbol{v}}^*T'\right]$ 'stationary total MMC "transients"


eddies


- Mean of product is decomposed and rules of averaging are applied, leaving product of means plus means of products of
- two kinds of perturbations
- Mean of products is heat flux associated with MMC (Hadley and Ferrel Cells)
- Heat flux by stationary eddies is associated with large-scale features produced by land-sea contrasts and topography that don't move around
- "Transients" are traveling weather disturbances (waves and fronts), which move a lot of heat!

The "Big Picture"

- We've emphasized horizontal transport of energy to balance the planetary energy budget:
 - Hadley Cell
 - Subtropical divergence
 - Midlatitude cyclones and conveyor belts
- What about vertical motion?
 - "Up-warm, down cold"
 - "Up moist, down-dry"
- Severe weather is all about vertical motion, and represents local release of energy that contributes to planetary energy balance

Stuff to Remember

- The general circulation transports energy upward and poleward to balance radiational losses to space
- The Earth's rotation complicates this!
- The Hadley cell imports water vapor and condenses it to lift the tropical atmosphere, tilting pressure surfaces
- The resulting polar vortex is unstable, producing waves in the jets that allow mixing across the midlatitudes (and which also control winter weather!)