Wind-Driven Gyre Circulations and Boundary Currents

Scott Denning -- CSU CMMAP

• Strongly baroclinic conditions eliminate and even reverse pressure gradient at depth (countercurrent)

Tropical Oceans and El Nino

Read article by W. Broecker

- Bottom water formation in Antarctic
- Ekman convergence in subtropical gyres forces water down against buoyancy

Scott Denning -- CSU CMMAP

Thermohaline Heat Pump

- Upper limb inflow to North Atlantic ~ 10° C
- Lower limb outflow ~ 3°C
- dQ = c dT ~ 3×10^7 J of heat released by each m³ of water during conversion from upper limb to lower limb water mass
- 20 Sv = 20 x 10⁶ m³ s⁻¹ of water makes this transition, releasing 6 x 10¹⁴ J s⁻¹ (= 0.6 Pw) of heat to the atmosphere
- This is 35% of solar heating of North Atlantic north of 40° N latitude!

