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Modern Climate Change
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Climate predictability

Climate forcing
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Responding to “Climate Skeptics”

Paleo CO, and the Ice Ages

+ Over the past 420,000

years atmospheric CO,
has varied between 180
and 280 parts per

million, beating in time
with the last four glacial
cycles
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Climate Change
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+ Since the Industrial

Paleo CO, and the Future

+ Over the past 420,000
years atmospheric CO,
has varied between 180
and 280 parts per
million, beating in time
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Climate vs. Weather

"Weather tells you what to wear today ...
climate tells you what clothes to buy!”

+ Climate is an “envelope of possibilities”

within which the weather bounces around

+ Weather depends very sensitively on the

evolution of the system from one moment
to the next (“initial conditions")

+ Climate is determined by the properties of

the Earth system itself
(the "boundary conditions")

Climate Predictability

* Predicting the response of the climate to a

change in the radiative forcing is not analogous
to weather prediction

* If the change in forcing is large and predictable,
the response can also be predictable

+ T can't predict the weather in Fort Collins on
December 18, 2008 (nobody can!)

* I can predict with 100% confidence that the
average temperature in Fort Collins for
December, 2008 will be warmer than the
average for July!
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Climate Forcing

+ Changes in climate often reflect changes in forcing, as

amplified or damped by climate feedbacks
- Diurnal cycle

- Seasonal cycle

- Iceages

- Response to volcanic aerosol

- Solar variability

- Greenhouse forcing

+ If forcing is sufficiently strong, and the forcing itself is

predictable, then the response of the climate can be
predictable tool
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Climate Change

Greehouse Radiative Forcing
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* Changes of ~0.2% (= 2.7 W m-2) reflect
11-year sunspot cycle
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BOOM!

Volcanos release
huge amounts of
S02 gas and heat

S0O2 oxidizes to SO4
aerosol and
penetrates to
stratosphere

S04 aerosol
interacts with solar
radiation

Mt. Pinatubo, 1991
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Stratospheric Aerosol Forcing
10" October 1978 - June 1992

It
<
[

ot

Optical Depth

—
2

EEEETI |

£
£
1 T IT L L 1 i A 1 T

1979 1981 1983 1985 1987 1989 1991

Fig. 11.5 Polar stratospheric optical depth versus time derived from SAM II and SAGE solar ex-
tinction measurements. Superimposed on the normal seasonal variations are major injections of aerosols
associated with the El Chichén and Mt. Pinatubo eraptions, [From McCormick, et al. (1993).]
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Solar irradiance forcing (W m?)
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Variations of the Earth’s surface temperature for...
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Climate Change
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ATmosPHERIC WATER VAPOUR

‘2) Column Water Vapour, Ocean only: Trend, 1988-2004
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Trends in annual mean surface water vapour 24
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have significant decreasing trends, both
at the 5% significance level. Biases in
these data have been little studied so the
level of significance may be overstated.
From New et al. (2000).
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Cryospheric Change

RATES OF OBSERVED SURFACE ELEVATION CHANGE

CHANGES IN SEA ICE EXTENT
Arctic Minimum Sea Ice Extent Anomalies (1979 - 2005)
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Antarctic Sea Ice Extent Anomalies (1979 - 2005)
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Local melting can change both the thickness of
ice sheets and the extent of sea ice

Both sea ice and ice sheets are dynamic (they
move in response to a PGF, friction, etc)

Accumulating ice in cold areas due to enhanced
precipitation and melting in warmer areas
leads to stronger pressure gradients and
accelerating ice movement toward coasts

Melting sea ice has no effect on sealevel, but
melting land ice does (~7 m for Greenland)
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Historical Sealevel Changes .
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Figure TS.18. Annual averages of the global mean sea level based on
reconstructed sea level fields since 1870 (red), tide gauge measurements
since 1950 (bie) and satelite aitimetry since 1992 (biack. Units are in mr
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SRES Scenarios

Economic

Al A A2

Global < i Regional

D, . s
iving Fore?

Each “storyline” used to generate
10 different scenarios of population,
technological & economic development

Emission Scenarios

A1l: Globalized, with very rapid economic
growth, low population growth, rapid
infroduction of more efficient technologies.
A2: very heterogeneous world, with self
-reliance and preservation of local identities.
Fertility patterns across regions converge very
slowly, resulting in high population growth.
Economic development is regionally oriented
and per capita economic growth & technology
more fragmented, slower than other
storylines.

B1: convergent world with the same low
population growth as in A1, but with rapid
changes in economic structures toward a
service and information economy, reductions in
material intensity, introduction of clean and
resource-efficient technologies. The emphasis
is on global solutions to economic, social, and
environmental sustainability, including
improved equity, without additional climate
initiatives.

B2: local solutions to economic, social, and
environmental sustainability. Moderate
population growth, intermediate levels of
economic development, and less rapid and more
diverse technological change than in Bl and Al.

Climate Change

Emission Scenarios
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» Uncertainty about
human decisions is a
major driver of
uncertainty in climate
change
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Figure 24: Global average sea level rise 1990 to 2100 for the SRES scenarios. Thermal expansion and land ice changes were calculated using a
simple climate model calibrated separately for each of seven AOGCMs, and contributions from changes in permafrost, the effect of sediment
deposition and the long-term adjustment of the ice sheets to past climate change were added. Each of the six lines appearing in the key is the
average of AOGCMs for one of the six illustrative scenarios. The region in dark shading shows the range of the average of AOGCMs for all thirty
five SRES scenarios. The region in light shading shows the range of all AOGCMs for all thirty five scenarios. The region delimited by the outermost
lines shows the range of all AOGCMs and scenarios including uncertainty in land-ice changes, permatrost changes and sediment deposition. Note
that this range does not allow for uncertainty relating to ice-dynamic changes in the West Antarctic ice sheet. [Based on Figure 11.12]
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Climate Skeptics

* Observed warming in the past is caused by
something else
- Natural cycles
(e.g., recovery from Little Ice Age)
- Changes in the sun
- Volcanos
- Etc

+ Climate system is too complicated to be
predicted, and climate models are too
simplistic to represent real physics
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Responding to Skeptics

Observed warming not caused by humans:

- There hasn't been much warming yet, because
CO, hasn't increased very much (about 30%)

- Does that mean that there won't be warming
when CO, increases by 300%?
Models are insufficiently complicated:

- Predictions of warming don't require
complicated models, just simple physics

- Predicting that climate will not change if we
double or triple CO, requires some kind of
huge offsetting forcing (“follow the energy")

- Complicated models don't show any such thing
- Observations seem to favor the simple solution




