The Stratosphere & the Ozone Hole




Temperature
Structure

 The atmosphere is layered
according to its
temperature structure

* In some layers
temperature increases
with height

* In others it decreases with
height or is roughly
constant

... pause’” is a level
... sphere” is a layer
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Height (km)

Air Temperature Structure
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 Cold (and high) tropical tropopause

« Temperature keeps on decreasing into the stratosphere during polar winter

e Southern polar winter much colder than northern polar winter

Contour values are in °C, long dashed lines mark
the tropopause and stratopause, respectively.

Pressure (hPa)



Ozone (O,)

 Why is it good for us?
 Why is it bad for us?
 How is it formed?
 How is it destroyed?

Ozone hole

24 Sep 2006

Total Ozone (Dobson Units)
http.//ozonewatch.gsfc.nasa.gov/ e e e



ultraviolet radiation
at the top of the atmosphere
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Ozone Vertical Structure Stratosphere:
*90% of atmospheric
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(Simplified) Stratospheric Ozone Production
Photolysis (photo: light + lysis: splitting)

~/ + Ultraviolet = ) + €)

Step p
Sunlight

Step <

WMO Ozone Assessment 2010, Q&A, NOAA

_ sunlight
Overall reaction: 30y =——3>» 203

Net: UV — Heat (this is why temperature
increases with height in the stratosphere)



Catalytic Ozone Destruction

Catalyst: accelerates reaction
without being consumed itself

Ozone Destruction Cycle 1

Oxygen molecule (O») Chlorine atom (Cl)

\

Chlorine
catalytic

)

Ozone (O3)

0\
Cl+ 05 1_ Ozone

= reaction ) \ destruction

A\

Oxygen atom (O) Chlorine monoxide (CIO) J Oxygen molecule (O2)
CI+03—> CIO+02

CIO+0O—- Cl+05
Net.'O+O3—’ 20,
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Clorofluorocarbons (CFCs)

Measurements of Reactive Chlorine from Space

Also similar halons (bromine November 1994 (35° — 49°N)

compounds)
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CFCs & Enhanced Catalytic Ozone Destruction

CFCs provide extra Cl atoms that spin up ozone destruction

(only) 7% ozone depletion by ~2050 based on studies in mid to late 1970's
(most famously Molina & Roland, Nature 1974)

U.S. Bans CFC use in aerosol sprays in 1978
NASA launches Total Ozone Mapping Spectrometer (TOMS) Satellite in 1979
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Total Ozone (DU)

Discovery of Ozone Hole, Montreal Protocol
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Antarctic Ozone Depletion
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Antarctic Total Ozone
(October monthly averages)
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Why Ozone Hole?

Polar Ozone Depletion
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Polar Stratospheric Cloud Surface

Reaction

1. HCl and CIONO2
collect on PSC

2. HCl and CIONO2 react on
PSC to form Cl2 and HNO3

Q"'s —p Q+‘

3. Cl2 comes off PSC, while 3. Cl2 is photolyzed by visible
HNO3 remains on PSC to wavelengths, and begins
settle out of stratosphere. catalytic reaction.

@i, ‘ HNO3; @ Hci 3 CIONO, ‘ Ice or HNO3 - 3H,0




HCI and CIONO, react on the surface of cloud particles, releasing
Cl,. As the sun rises in the spring, the Cl, is photolyzed by visible
light, starting a catalytic reaction that depletes ozone 1-2% per day!
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“Mother of Pearl Clouds”
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tratospheric Cloud (PSC), photo courtesy Andreas Dérnbrack



The Players

1995 Nobel Prize in Chemistry
to Molina, Rowland, Crutzen
“for their work in atmospheric
chemistry, particularly
concerning the formation and
decomposition of ozone”

..__.'r - .

Mariuo Molina Serwood Paul Crutzen
Rowland

Discovery of Ozone Hole 1984/1985 by
Shigeru Chubachi (left) and Joseph Farman,
Brian Gardiner, Jonathan Shanklin (right)
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Arctic vs. Antarctic

During polar night lack of incoming solar radiation (i.e. lack of Ozone
heating due to UV absorption) leads to strong cooling of stratospheric air

The cold air tends to sink and spin up a gigantic vortex sitting over the
polar cap of the winter hemisphere, with maximum winds ~60° latitude

Air inside strong polar vortex over Antarctic becomes isolated and cools
sufficiently to produce PSCs — Ozone depletion & Ozone Hole

Polar vortex over Arctic is frequently disturbed by atmospheric planetary
waves that are generated at the Earth's surface by land/sea contrasts
and topography and propagate up to the stratosphere

These planetary waves can lead to a phenomenon called Sudden
Stratospheric Warming (SSW), where temperatures inside the polar
vortex increase by several 10s of degrees

SSWs prevent air to be cold enough to produce wide-spread PSC
coverage over the Arctic

SSWs occur about every other year over Arctic, only 1 SSW has ever
been recorded over Antarctic (in 2002)



Minimum Air Temperatures in the Polar Stratosphere
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Total ozone (Dobson units)
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Sudden Stratospheric Warming in November 2001
Split-up of the Arctic Polar Vortex, PV at 550 K (25 km)




Historical Notes: the Berlin Phenomenon
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Split-up of the Antarctic Ozone Hole in 2002

Sep 24 2002




Major CFCs (ppt)

Solvents (ppt)

Effect of the Montreal Protocol:
CFCs are meanwhile decreasing
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EESC (relative amounts)

Effect of the Montreal Protocol
Long-term changes in equivalent effective
stratospheric chlorine (EESC)
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Simulations of Stratospheric Ozone Depletion

Total ozone change (DU)

Minimum total ozone (DU)

Results from chemistry-climate models
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Increased CO, leads to stratospheric cooling(!)
— more PSCs, slowed Ozone recovery
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Fig. 12.7 Temperature profiles calculated with a one=di ' lative—convective equilibrium
model for CO, at 150, 300, and 600 ppmv. [Data frof Manabe and Wetherald (1967)_Reprinted with per-

mission from the American Meteorological Society.]




Lessons Learned

Adding trace gases to the atmosphere with long
lifetimes can be dangerous

Monitor atmospheric constituents, double-check data

Montreal Protocol (and its successors) worked based
on international scientific assessments

Don't underestimate human ability to invent new
technology if needed (without running into
economical crisis)

A model for dealing with Climate Change?



Bonus Material: Stratospheric
Transport Circulation

 How can CFCs, which are emitted by human activity
(mostly in Northern Mid-latitudes) reach the Antarctic
Stratosphere?

« How does Water Vapor (needed to produce PSCs)
enter the Stratosphere?

 Why is there less Ozone in the tropics (despite more
incoming solar radiation) than in the polar regions?



from Vallis (2006)
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Discovering the Stratospheric Circulation

Dobson, Harrison, Lawrence (1929): “The only way in which
we can reconcile the observed high ozone concentration in the
Arctic in spring and the low concentration in the tropics ... would
be to suppose a general slow poleward drift in the highest
atmosphere with a slow descent of air near the poles ...”

Height (km)
(edy) einsseld

But: Dobson didn't have vertical
ozone profiles then and basically Ozome Densty (DU k")

discarded this possibility. IPCC/TEAP special report, 2005
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Discovering the Stratospheric Circulation

Dobson, Brewer, Cwilong (1946, Bakerian Lecture): showed
some of the first frost point profiles (obtained by Brewer and
Cwilong) measured by a frost point hygrometer — the
Stratosphere was found to be very dry.
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Discovering the Stratospheric Circulation

Brewer (1949): “... dryness is maintained by a slow circulation of
the air in which air rises at the equator moves poleward in the
Stratosphere and then descends Into the troposphere In
temperate and polar regions ...”
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Lsotherms over the Globe

Fi. 5. A supply of dry air is maintained by a slow mean circulation from
the equatorial tropopause,
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SPARC CCMVal Report (Gettelman et al., 2010)
Cold Point Tropopause Temperature, -20- 20lat
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