Teaching Weather and Climate Saturday PM Climate Change Impacts

Projected Changes to Sea Ice

a) 1980-2000 average b) 2080-2100 average

Climate Change
Impacts
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Figure 10.14. Mult-model mean sea ice concentration (%) for January to March (IFW) and June to September (JAS), in the Arctic (top) and Antarctic (bottom) for the periods
(a) 1980 to 2000 and b) 2080 to 2100 for the SRES A18B scenario. The dashed white fine indicates the present-day 15% average sea ice concentration limit. Modified from Flato
etal (2004).
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Planetary
Waves
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Energy Water Stress
Transport
Pr'ojecfed Changes in Projected Changes to Hydrology
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+ More rainfall overall because warm air
evaporates more water from oceans

+ Wet places get wetter, dry places get drier
(compare deep tropics to subtropical deserts)

+ Severe drying in Mediterranean and SW USA
* Colorado is near the “zero change line"
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August 2011

Impacts on Water Supply Current US Drought

July 10, 2012
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A Region On the Edge

Average Annual Precipitation

Colorado
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Much of the region
already receives only
marginal precipitation

Just enough snow to
support forests and
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Just enough irrigation

- water to support
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Changes in Stored Energy

ENERGY CONTENT IN THE CLIMATE SYSTEM
GroBaL OceaN HEaT ConTENT (0 - 700 m)
Energy Content Change (102 J)
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Figure TS.16. Time series of giobai ocean heat content (1022 Jj
for the 0to 700 m layer. The three coloured lines are independent
analyses of the oceanographic data. The biack and red curves

Figure TS.15. Energy content changes in different components denote the deviation from their 1967 to 1990 average and the
of the Earth system for two periods (196 1-2003 and 1993-2003). shorter green curve denotes the deviation from the average of
Biue bars are for 1967 to 2003; burgundy bars are for 1993 to the biack curve for the period 1993 to 2003. The 90% uncertainty
2003. Positive energy content change means an increase in range for the black curve is indicated by the grey shading and for

stored energy (i.e., heat content in oceans, latent heat from the other two curves by the error bars. {Figure 5.1}

reduced ice or sea ice volumes, heat content in the continents
excluding latent heat from permafrost changes, and iatent and
sensible heat and potentiai and kinetic energy in the atmosphere).

Historical Sealevel Changes Sealevels and Emission Scenarios
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Glaclors o caps 0501018 08102 0171022 07203 Figure T$.19. (Top) Monthly mean sea level (mm) curve for 1950 Year
Greeniand ice Sheet 005 2 0.12¢ 0212007 to 2000 at Kwajalein (8°44'N, 167°44°E). The observed sea level Figure 24: Global average sea level rise 1990 to 2100 for the SRES scenarios. Thermal expansion and land ice changes were calculated using a
Artarctio oo Sheet 01420410 0212038 (from tide gauge measurements) s in bie, the reconstructed sea simple climate model calibrated separately for each of seven AOGCMs, and contributions from changes in permafrost, the effect of sediment
‘Sum of inavdual climate contributons to level in red and the satellite altimetry record in green. Annual and deposition and the long-term adjustment of the ice sheets to past climate change were added. Each of the six lines appearing in the key is the
sealevelriss 11e08 12108 28107 26108 semiannual signals have been removed from each time series and average of AOGCMs for one of the six ilustrative scenarios. The region in dark shading shows the range of the average of AOGCMs for all thirty
Observed otal sealevel rise 18205 31:07 the tide gauge data have been smoothed. (Bottom) Geographic five SRES scenarios. The region in light shading shows the range of all AOGCMs for all thirty five scenarios. The region delimited by the outermost
(w30 gauges) fsatolite altmeter) distribution of 5”:”’"5”" linear trends in mean sea level for 1993 lines shows the range of all AOGCMs and scenarios including uncertainty in land-ice changes, permafrost changes and sediment deposition. Note
Difference (Observed total minus the sum 07207 03210 t0 2003 (mm yr-!) based on TOPEX/Poseidon satellite altimetry. that this range does not allow for uncertainty relating to ice-dynamic changes in the West Antarctic ice sheet. [Based on Figure 11.12]
of cbserved cimate contrutions) {Figures 5.15 and 5.18}
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Male, Maldives

Maldives Sea Level (Average of 0-7°N, 70-77°E)

Rate = 2.2 mm/year
Seasonal Variations Removed

AMSL (mm)
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Coastal
Flooding

+ Small floods are
common, big floods
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Bathtub Drainage Common Myth #2
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Common Myth #2

“When we reduce or stop the burning of fossil
fuel, the CO, will go away and things will go
back to normal”
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Climate and Sea Levels
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Climate and Sea Levels
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What we Know for Sure

CO2 molecules absorb & re-emit thermal
radiation (Tyndall, 1863)

Doubling the number of COz molecules
would add 4 W m2 to the surface 24/7
(Arrhenius, 1896)

If China and India industrialize with coal,
CO:z will approach 400% preindustrial by
2100

Additional COz will continue adding heat
to Earth’ s surface for thousands of years
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What We're
Not So Sure About

* When and in precisely what ways the

climate will change, especially locally

* The economic, political, and social

consequences of these changes

- What to do about all of this
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