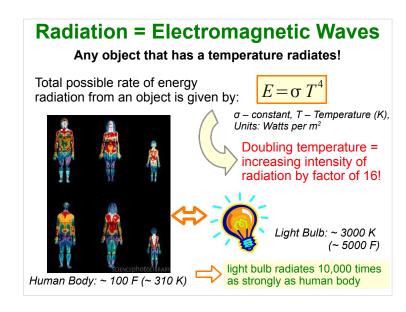
MONDAY: energy in and energy out on a global scale


Energy & Radiation, Part II

- Heat Transfer Radiation
- Understanding the *Electromagnetic* Spectrum & Energy Balance

Ways to label Radiation

- By its source
 - Solar radiation: originating from the sun
 - Terrestrial radiation: originating from the earth
- By its name
 - ultra violet, visible, near infrared, infrared, microwave, etc....
- By its wavelength
 - short wave radiation: $\lambda \le 3$ micrometers
 - long wave radiation: $\lambda > 3$ micrometers

Radiation = Electromagnetic Waves Any object that has a temperature radiates! Radiation travels as **ENERGY CARRIED** waves/photons (at PER WAVE OR the speed of light, c ~ 300,000 km/s ~ 671,000 mph) Wavelength (λ) conveniently measured in 10-3 Microwaves micrometers: $10^{-6} = 1 \mu m$ nfrared waves $1 \text{ um} = 10^{-6} \text{ m}$ $5 \times 10^{-7} = 0.5 \mu m$ /isible light Electromagnetic 10.7 Waves do **not** Ultraviolet waves require a medium 10-9 (such as air) to propagate frequency (f) = c / λ and Energy ~ f ~ 1 / λ

Monday AM, Explain: Energy

Trees emit radiation:

Higher Temperature → **Smaller Wavelength**

- Human body: 310 K (100 F) → peak wavelength of emission ~ 10 μm (mid-infrared)
- (conventional) Light bulb: 3000 K (5000 F) → peak wavelength of emission ~ 1 µm (nearinfrared, compare visible light: 0.4–0.7 µm)
- higher temperature → smaller wavelength

$$\lambda_{max} = \frac{3000}{T}$$

$$T - Temperature in K, \lambda_{max} - wavelength at maximum radiation in \mu m = 10^6 m (micrometers)$$

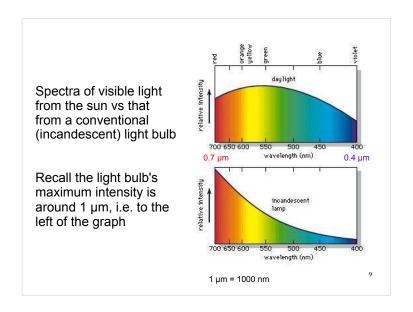
$$Wien's Law (pronounce "Veen")$$

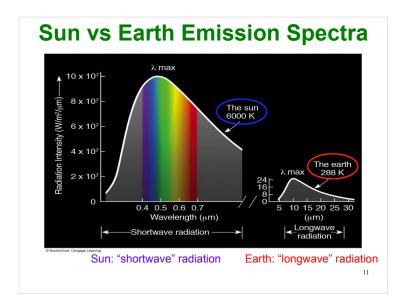
Temperature vs Wave Type

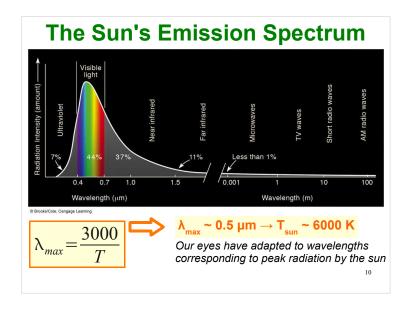
- Hotter objects emit electromagnetic waves (radiation) with more energy than colder objects
- Waves with more energy have shorter wavelengths (e.g. ultraviolet radiation is more likely to burn your skin than visible radiation)
- The wavelength at which an object emits its maximum amount of radiation is inversely proportional to the object's temperature:

$$\lambda_{max} = \frac{3000}{T}$$

T – Temperature in K, λ_{max} – wavelength at maximum radiation in μ m = 10^{-6} m (micrometers)


➡ Wien's Law (pronounce "Veen")


Basic Radiation Laws


- · Stefan-Boltzmann law:
 - (E = σ * T⁴) (energy flux in Watts / m²)
 - As T increases, E increases by a power of 4.
 If T doubles, E increases by 16 times!
- Wien's law:
 - λ_{max} = 3000 / T , λ_{max} is in μm and T is in Kelvin
 - Wavelength of peak radiation emitted by an object is inversely related to temperature
- · Planck's law:
 - Describes the emission of radiation in each wavelength, as a function of temperature

.

Monday AM, Explain: Energy

