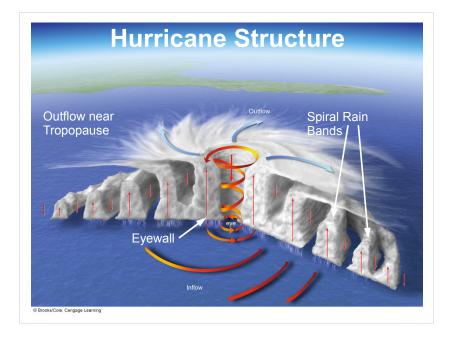
Tuesday PM, Explain: Hurricanes

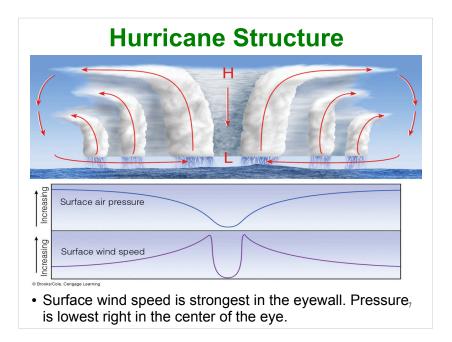
Tropical Storm Categories

- Tropical Cyclone: term for all hurricane type storms that originate in the tropics
- Hurricane: intense, sustaining winds exceeding 64 kt (form over warm northern Atlantic and eastern Pacific oceans)
- Typhoon: in the western Pacific
- Stages of a hurricane:
- Tropical disturbance: slight circulation
- Tropical depression: winds 20 to 34 kt, relatively strong pressure gradient
- Tropical storm: winds 35 to 64 kt, very strong pressure gradient
- Hurricane: winds exceed 64 kt (74 mi/h)

Hurricanes & Easterly Waves

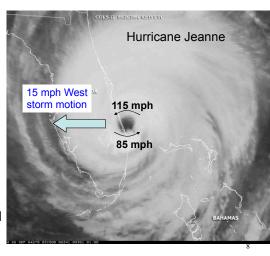
- Winds in the tropics blow from east to west
- Easterly wave (tropical wave): weak trough of low pressure, scale > 2500 km, travels westward at 5-10 m/s (~10-20 mph)
- This wave can intensify into a hurricane




2

Stages of Development

Tuesday PM, Explain: Hurricanes



Eye (calm) Eye Wall Spiral rain bands Rain free areas Rain free area Spiral rain band

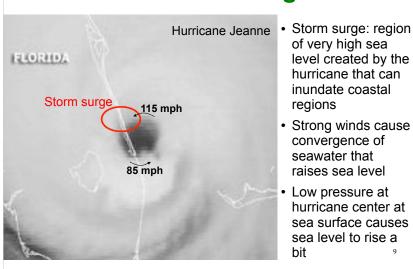
The Eyewall and Maximum Winds

- Maximum sustained winds are located in the eyewall (also strongest convection)
- For observer on the ground strongest winds are located on the right side of the eyewall with respect to the motion
- Example on the right shows eyewall winds of 100 mph combined with westward motion of 15 mph

The Storm Surge

of very high sea

convergence of seawater that


raises sea level

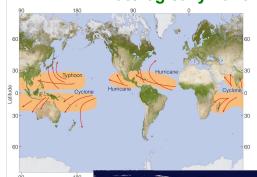
hurricane center at sea surface causes sea level to rise a

regions

bit

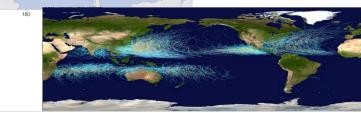
level created by the hurricane that can inundate coastal

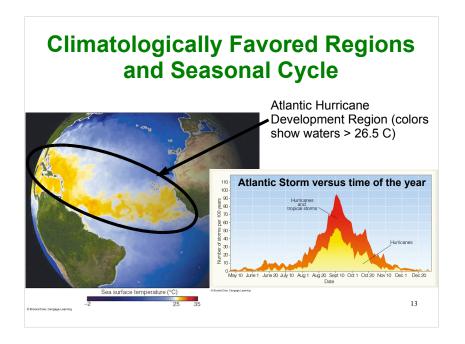
The Storm Surge Effects from Hurricane Ike


Photo from Associated Press, Gilchrist Texas, September 14, 2008

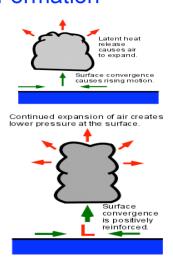
Hurricane Formation

- · Light winds, weak to no vertical wind shear
- · High humidity through a deep layer of the troposphere
- Warm sea surface temperatures (greater than 80 F = 26.5 C) over a wide area
- Formation between 5 20 degrees latitude
 - Coriolis force (zero at equator) required for spin up
- Triggering mechanism required (surface convergence)
- Proposed mechanisms for hurricane formation:
- Organized convection theory
- Heat engine theory


11

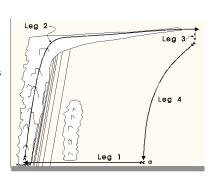

Hurricane Formation & Hurricane Tracks Climatologically Favored Regions

Tropical cyclones are steered in part by the semipermanent subtropical high pressure systems.


Shading represents preferred formation regions.

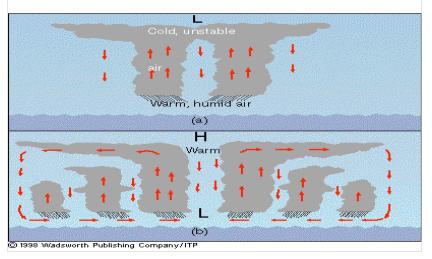
CISK: Organized Convection Theory for Hurricane Formation

- Energy for the hurricane come from latent heat and conditional instability.
- 1: Surface air spiraling towards the center leads to convergence and rising motion.
- 2: Intense latent heating heats the column of air near the center of the storm.
- 3: Lower surface pressure increases the pressure gradient at low levels
- 4: A larger pressure gradient causes more air to converge towards the center, enhancing rising motion and latent heat release.
- This is a <u>positive feedback loop</u>, enhancing storm strength



Organized Convection and Heat Engines

Heat Engine: Device that converts thermal to mechanical energy


As documented by Kerry Emanuel, MIT:

- Sea surface acts as a hot reservoir that adds latent heat to the hurricane through evaporation (warmer SSTs support more evaporation), aided by the high hurricane winds (Leg 1).
- Air in the hurricane convects and rises at the moist adiabatic lapse rate (Leg 2)
- The upper troposphere and lower stratosphere acts as the cold reservoir, where the hurricane looses heat through radiative cooling (Leg 3)
- Higher SST → more work goes into lowering storm pressure and strengthening winds than for low SST
- SST sets an upper bound on maximum possible hurricane strength

14

CISK: Organized Convection Theory for Hurricane Formation

