Wednesday PM, Explain: Climate Change

WEDNESDAY PM: Climate Change

Climate Change: Past, Present, Future

» How is climate prediction different from
weather prediction?

* Why it's simpler than you think

 Future climate predictions, uncertainties

Weather Prediction and “Chaos”

» Weather prediction is a deterministic problem, yet 100%
certainty is impossible

« this is because of the so-called “sensitivity to initial
conditions”: an ever so slight change/error in the initial
conditions (e.g. the currently observed state of the

atmosphere) can lead to completely different future states

« Often referred to as the “butterfly effect” (the flap of a
butterfly's wings in Brazil setting off a tornado in Texas)

» Edward Lorenz (meteorologist, pioneer of chaos theory):

- Chaos: When the present determines the
future, but the approximate present does
not approximately determine the future.

®
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Weather — Climate

“Weather tells you what to wear, Climate tells you
what clothes to buy”

x Weather: the condition at a specific location at a
specific time

x Climate: the average conditions and their variability
(includes extremes); the statistics of weather

x Climate is an “envelope of possibilities” within which
the weather bounces around

x Weather depends very sensitively on the evolution
of the system from one moment to the next (“initial
conditions”)

x Climate is determined by the properties of the Earth
system itself (“boundary conditions”)

Henri Poincaré, the Three-Body Problem, and the
Discovery of Chaos

The “n-body problem”: given the quasi-steady orbital properties
(instantaneous position, velocity, time) of a group of celestial
bodies, predict their interactive forces; and consequently,
predict their true orbital motions for all future times [wikipedia]

Oscar Il, King of Sweden in 1887: prize for anyone who could
solve this problem

Henri Poincaré (famous French mathematician and phyS|C|st)
could not completely solve the problem, but his work oy
“is nevertheless of such importance that its publication
will inaugurate a new era in the history of celestial
mechanics” [Karl Weierstrass, one of the judges]

Indeed, Poincaré's work led to the theory of chaos

“It may happen that small differences in the initial positions
may lead to enormous differences in the final phenomena.
Prediction becomes impossible.”
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Weather < Climate Climate & Climate Change

X Today's sunset: 8:30 pm
* Climate is the accumulation of daily and seasonal
x Today's 7-day forecast: 85 /57 F weather events over a long period of time (climate

X July Long-Term Climatology: 75 F / 54 F 's the statistics of weather)

" « Climate can change on various time-scales: millions
X June 2015: average temperature 70 F (9 of years, thousands of years, hundreds of years,
warmest in 127 year record), minimum: 49 F decades

(on 1 & 8 June), maximum: 94 F (on 19 June) . . .
« Climate can change in response to different factors:

x Weather: minutes to weeks, ~ the time scale - Natural

to which a specific event may be forecast - Human-induced (“Anthropogenic’)

x Climate: seasonal, annual, decadal, centurial,

millennial, ...
Factors in Climate Variability/Change Climate through the Ages Armday
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Reconstructed Temperature
(last 1,300 years), from IPCC 2007
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» Temperature relative to present, plotted as agreement between
different reconstructions (e.g. from tree rings)

» Thermometer record available over past 150 years: solid line
* Relatively warm period 950—-1250 (Medieval Warm Period)
* Relatively cold period 1250-1850 (Little Ice Age)

Cautionary Note: Do Not Overinterpret

every Wiggle in the Plot!
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« We are sure that July will be warmer than January due to

increasing solar insolation, even though there's lots of natural
variability along the way (mostly related to weather patterns)

« Individual warm or cold spells do not necessarily indicate a trend!

Thomas Birner, ATS, CSU
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http://www.cru.uea.ac.uk/cru/data/temperature/

Observed change in surface temperature 1901-2012

IPCC 2013
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Climate Change is more than Surface
Temperature Change!

Observed change in annual precipitation over land
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IPCC 2013 13

Can we attribute the recent observed temperature
changes to anthropogenic (human) forcing?

» To answer this scientists look at (amongst
other things):

- Basic physics

- vertical/horizontal patterns of temperature
changes

- Oceanic temperature / heat content changes,
sea level changes

- Sea ice and glacier retreat

- Climate model response to imposed
greenhouse gas forcing

Thomas Birner, ATS, CSU
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Climate Change is more than Surface
Temperature Change!

Northern Hemisphere spring snow cover (c)  Change in global average upper ocean heat content
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Population growth is not
the driver of future climate!
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Population to grow by 40% in 100 years
Global economy to grow by 1600%

(assumes 2.8% annual GDP growth)



Wednesday PM, Explain: Climate Change
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A Region On the Edge

Average Annual Precipitation
Colorado
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Anthropogenic Climate
Variability and Change

Various resources at the Intergovernmental Panel on
Climate Change (IPCC) Website:
http://www.ipcc.ch/report/ar5/index.shtml
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Feedbacks

» A process that changes the sensitivity of the
climate response to an external forcing

« Positive feedback: increase the magnitude of
the response to the forcing

- Ice/albedo feedback
- Water vapor feedback
- Ocean carbon cycle feedbacks

» Negative feedback: decrease the magnitude of
the response to the forcing

- Stefan-Boltzmann feedback (i.e. warmer Earth
emits more radiation out to space)

Effect of clouds on climate: thick vs Cloud
thin, high vs low
Feedback

High, very thin clouds warm the
climate (let most sunlight through,
emit at low temperature)

Low, thick clouds cool the climate ~(200y| --- _TF_OPPP?Hf?_
(emit a lot of terrestrial radiation,

reflect a lot of solar radiation)

Recall: in the net clouds contribute to Temperature
Earth's albedo, i.e. clouds have a net profile

cooling influence on average climate

Cloud feedback in a warming climate
depends on relative changes of high
vs low clouds

Currently, clouds are thought to be a
slight positive feedback, but big

o Surface
uncertainties 7

Thomas Birner, ATS, CSU
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Solar Variability
* The Sun's output is not exactly constant at 1366 W/m? — it
does show some modest variation in time

« 11-year cycle in output, corresponding to variations in
sunspots (large number of spots = high output)

Percent area of Sun's photosphere covered by sunspots

Yellow > 1%
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» Fraction area of entire photosphere covered by sunspots
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Wim?

Volcanoes

* Volcanoes emit sulfur dioxide
that become aerosols (airborne
solids) in the stratosphere —
reflect sunlight, increase
earth's albedo reducing the
solar radiation absorbed by the
climate system

For example, lower-left:
globally-averaged reduction in

Solar Net Fiux absorbed solar radiation after
os Mt. Pinatubo eruption in
—t : summer 1991

AO-0

Some are advocating man-

made stratospheric injections
= of aerosols to mitigate

07/91 1091 oe2 oas2 o792 102 01/83 04193 anthropogenic climate Warn?ﬁng

Time (months)

Force “full-blown” climate model with past
radiative perturbations — what is the response?

» Greenhouse Gases
 Volcanoes

« Solar variations

» Land use changes
* Aerosols

» Ozone changes

Thomas Birner, ATS, CSU

Volcanoes

Distribution of Mt. Pinatubo
stratospheric forcing

» Reduction in solar
radiation due to Mt.
Pinatubo led to a cooling
of the globally-averaged

S temperature ~ 0.5-0.7 C

Global temperature change after Pinatubo
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Depending on the scenario, anywhere from 1-5 C for globally averaged 3s
warming in the year 2100. This warming is not uniformly distributed.
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Climate Model Trends by Scenario
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Climate Model Trends by Scenario
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We Know for Sure

+ COz; molecules absorb & re-emit thermal
radiation (John Tyndall, 1859)

+ Doubling the number of CO. molecules
would add 4 W m to the Earth 24/7
(Svante Arrhenius, 1896)

+ If China and India industrialize with coal,
CO: will approach ~400% of its
preindustrial level by 2100

+ Additional CO- will continue adding heat to
Earth for thousands of years

Solutions

* To provide a decent standard of living for billions of
people on Earth ...

* ... we must generate huge amounts of energy
without releasing CO,,.

* This is definitely possible
(as an engineering task) ...

* ... but currently expensive and politically difficult.
* Can’t do it by “tinkering around the edges.”

* Requires profound changes to energy and
economics

Thomas Birner, ATS, CSU

What We’re
Not So Sure About

+ By precisely how much the climate will

change, especially locally

+ How climate varies on relatively short

time-scales (years to a couple of decades)

+ The economic, political, and social

consequences of these changes

+ What to do about all of this



