
✦ References:

Using MPI. Gropp, Lusk Skjellum
http://www.mpi-forum.org/docs/mpi-11-html/node182.html

✦ What is MPI?

1. MPI allows a collection of processes to communicate with
messages.

2. MPI is a library of subroutines called from Fortran, C and C++.
Programs are compiler with ordinary compilers and linked with
the MPI library.

3. MPI is a specification which is independent from particular
implementations. An MPI program should be portable to any
vendors hardware that supports MPI.

MPI Part 1

A minimal message-passing model

Network
Proc2

Proc1

I am proc1.
I will send to proc2

using tag=1

I am proc2.
I will receive from proc1

using tag=1

23
Proc3 Proc4 23

✦ The processes execute in parallel and can have separate address
spaces.

✦ Communication is cooperative. A message requires one process
to execute a send command, and one process to execute a receive
command.

✦ Information from one process’s address space (memory) is
transfered to another address space (memory) using a message.

✦ The two processes involved in the communication must agree upon
a message tag to distinguish a message from other messages.

MPI_COMM_WORLD

COMM_2COMM_1

Communicators

Proc2
Proc1

Proc3

Proc4

Proc5

✦ Groups of processes are called communicators.

- The default communicator is called MPI_COMM_WORLD. This
communicator contains all the processes in the current MPI universe.

- MPI allows for the formation of communicators within the global
communicator.

- Message tags are defined within the context of a communicator.

MPI_COMM_WORLD

COMM_1 COMM_2

Rank

Proc1
rnk_wrld:0 Proc2

rnk_wrld:1

Proc3
rnk_wrld:2 Proc4

rnk_wrld:3

Proc5
rnk_wrld:4

rnk_comm_2:0
rnk_comm_2:1

rnk_comm_2:2rnk_comm_1:0
rnk_comm_1:1

✦ Processes are identified within a communicator by their rank

- Rank is an integer

- Rank defined within the context of a communicator.

- If a communicator contains n processes, then the ranks are integers
from 0 to n-1.

The “hello world” Program

PROGRAM hello_world
USE mpi

IMPLICIT NONE
INTEGER :: npe_wrld, &! number of processes within the world communicator
 rnk_wrld, &! rank of process within the world communicator
 ierr

CALL MPI_INIT (ierr) ! initialize MPI environment
CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr) ! determine world size
CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr) ! determine rank within world

PRINT "(A19,I3,A4,I4)"," hello from proc = ",rnk_wrld," of ",npe_wrld

CALL MPI_FINALIZE (ierr) ! terminate MPI environment

END PROGRAM hello_world

✦ Important features of the hello_world program
1. Use the mpi module, or include the include file called mpif.h
2. Initialize the MPI environment.
3. Determine how many processes are in the current MPI environment.
4. Determine rank within the MPI_COMM_WORLD communicator
5. Terminate the MPI environment

Running the hello_world Program
PROGRAM hello_world
USE mpi

IMPLICIT NONE
INTEGER :: npe_wrld, &! number of processes within the world communicator
 rnk_wrld, &! rank of process within the world communicator
 ierr

CALL MPI_INIT (ierr) ! initialize MPI environment
CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr) ! determine world size
CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr) ! determine rank within world

PRINT "(A19,I3,A4,I4)"," hello from proc = ",rnk_wrld," of ",npe_wrld

CALL MPI_FINALIZE (ierr) ! terminate MPI environment

END PROGRAM hello_world

✦ To run the code use
mpirun. The -np
option determines
the number of
processes

The slightly modified “hello world” Program
✦ Important features of the slightly modified hello_world program

1. Use the mpi commands MPI_GET_PROCESSOR_NAME to
determine where a processes is actually running.

2. Use the mpi commands MPI_WTICK and MPI_WTIME to time code

3. Use the mpi commands MPI_BARRIER write output in order.

 PROGRAM hello_world_2
 USE mpi
 IMPLICIT NONE

 INTEGER :: npe_wrld, &! number of processes within the world communicator
 rnk_wrld, &! rank of process within the world communicator
 i,j,n,name_len,ierr
 REAL (KIND=SELECTED_REAL_KIND (12)) :: wall_tick,time_start,time_end,x

 CHARACTER (LEN=128) :: proc_name

 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr)

The slightly modified “hello world” Program
✦ Code (continued) for the slightly modified hello_world program

 CALL MPI_GET_PROCESSOR_NAME (proc_name,name_len,ierr)

 wall_tick = MPI_WTICK () ! wall clock timer increment in seconds
 IF (rnk_wrld == 0) PRINT "(A13,F12.8)"," wall_tick = ",wall_tick

! do some useless work
 time_start = MPI_WTIME () ! wall clock timer start
 x = 0.0_8
 DO j = 1,5000
 DO i = 1,5000
 x = x + SIN (x+FLOAT (rnk_wrld))
 ENDDO
 ENDDO
 time_end = MPI_WTIME () ! wall clock timer stop

! write the results
 DO n = 0,npe_wrld-1
 IF (rnk_wrld == n) THEN
 PRINT "(A19,I3,A4,I4,A12,A16,A10,F8.5,A10,F12.8)", &
 " hello from proc = ",rnk_wrld," of ",npe_wrld, &
 " running on ",TRIM (proc_name), &
 " time = ",time_end-time_start," answer = ",x
 ENDIF
 CALL MPI_BARRIER (MPI_COMM_WORLD,ierr)
 ENDDO

 CALL MPI_FINALIZE (ierr)

 END PROGRAM hello_world_2

Collective Communication

✦ Transfer information for one process to many (scatter) or
collect information from many processes to one (gather)

✦ MPI_BCAST broadcasts a message from the process with rank
ROOT to all processes of the communicator group COMM, itself
included. It is called by all members of group using the same
arguments. On return, the contents of root's send buffer has been
copied to the receive buffer on all processes.

MPI_BCAST (buffer,data_count,data_type,root,comm)

Collective Communication: Scatter

Collective Communication: Gather

✦ MPI_GATHER: Each process (root process included) sends the
contents of its send buffer to the root process. The root process
receives the messages into the receive buffer and stores them in
rank order.

MPI_GATHER(send_buffer,send_count,send_type,
recv_buffer,recv_count,recv_type,root,comm,ierr)

✦ MPI_REDUCE: Combines the elements in the send buffer of each
process in the communicator group comm, using the operation op,
and returns the combined value in the receive buffer of the process
with rank root.

MPI_REDUCE(send_buffer,recv_buffer,send_count,
send_type,op,root,comm,ierr)

where op can be several things including MPI_MAX(MPI_MIN) for
maximum(minimum), MPI_SUM for summation.

✦ Find an approximation for π using numerical integration

✦ The algorithm for the code:

1. The root process will read the global number of intervals and
broadcast the number to the other processes using MPI_BCAST.

2. Each process will then determine its subinterval using its rank in
the communicator and integrate to find its subarea

3. Using MPI_REDUCE with the option MPI_SUM the subareas are
summed to find the total area

An example with MPI_BCAST and MPI_REDUCE

!
0

1 4
1 ! x2

"x # Π

0.25 0.5 0.75 1

1

2

3

4

proc1 proc2 proc3 proc4

0.25 0.5 0.75 1

1

2

3

4

Code the Pi example

 PROGRAM pi
 USE mpi
 IMPLICIT NONE

 INTEGER :: npe_wrld,rnk_wrld,n,i,ierr
 REAL (KIND=SELECTED_REAL_KIND (12)) :: &
 del_x,x_left,pi_piece,pi_approx,time_start,time_end,x
! setup MPI
 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr)

! read and broadcast total number of intervals
 IF (rnk_wrld==0) THEN
 PRINT *, 'Enter the total number of intervals '
 READ (*,*) n
 ENDIF
 CALL MPI_BCAST (n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

 time_start = MPI_WTIME () ! wall clock timer start

! integrate subinterval
 del_x = 1.0_8/DBLE (n); x_left = DBLE (rnk_wrld)/DBLE (npe_wrld);
 pi_piece = 0.0_8
 DO i = 1,n/npe_wrld
 x = x_left + del_x*(DBLE(i)-0.5_8)
 pi_piece = pi_piece + del_x*(4.0_8/(1.0_8 + x**2))
 ENDDO

! gather the pieces of the pi
 CALL MPI_REDUCE(pi_piece,pi_approx,1,MPI_DOUBLE_PRECISION,MPI_SUM,0, &
 MPI_COMM_WORLD,ierr)
 time_end = MPI_WTIME () ! wall clock timer stop
! print the approximate value
 IF (rnk_wrld==0) THEN
 PRINT "(A12,F22.20)","pi_approx = ",pi_approx
 ENDIF
 CALL MPI_BARRIER (MPI_COMM_WORLD,ierr)
 PRINT "(A12,F14.10)","time = ",time_end-time_start

 CALL MPI_FINALIZE (ierr)

 END PROGRAM pi

Code the Pi example, continued

Point-to-point communication

✦ Here we send messages directly form one process to another.

✦ MPI_SEND:

- This is a blocking send. Control does not return until the
message data has been safely stored away so that the sender is free
to overwrite the send buffer.

- The syntax of the blocking send operation is given below:

MPI_SEND (BUFFER,DATA_COUNT,DATA_TYPE,DEST,TAG,
COMM,IERR)

where
DEST is the rank of destination (integer) within COMM
TAG is the message tag (integer)

Point-to-point communication

✦ MPI_RECV:

- This is a blocking receive. Control returns only after the receive
buffer contains the newly received message.

- The syntax of the blocking send operation is given below:

MPI_RECV (BUFFER,DATA_COUNT,DATA_TYPE,SOUR,TAG,COMM,
STATUS,IERR)

where
SOUR is the rank of source (integer) within COMM. The source
can also be specified as MPI_ANY_SOURCE
TAG is the message tag (integer). The tag can also be specified as
MPI_ANY_TAG

Point-to-point communication. Matrix-vector multiplication

✦ This is a “master-slave” algorithm. One process (the master) is
responsible for the coordinating the work of the others (the slaves).

✦ We wish to perform a matrix-vector multiply in parallel.

✦ The master algorithm for the code:

1. The master will broadcast the vector b to all the slaves.

2. The master will send one row of the matrix A to each slave.
3. The master then waits for the slave to perform the dot product

and return the element of c. At this time the master sends that

slave a new row of A. Continue until all rows are processed.

✦ The slave algorithm for the code:

1. The slaves receive vector b from master.

2. Perform dot-products of b and rows of A. Send result to master

Ab=c

Point-to-point communication. Matrix-vector multiplication.

 PROGRAM mat_vec
 USE mpi
 IMPLICIT NONE

 INTEGER,PARAMETER :: rows=100,cols=100
 INTEGER :: npe_wrld,rnk_wrld,master,i,j,count_rows,sender,row_index,ierr
 INTEGER :: status(MPI_STATUS_SIZE)
 REAL (KIND=SELECTED_REAL_KIND (12)) :: &
 a(rows,cols),b(cols),c(rows),buffer(cols),ans,time_start,time_end

 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr)

 master = 0

 IF (rnk_wrld==master) THEN ! THE MASTER DOES THIS BLOCK OF CODE

 ELSE ! THE SLAVES DO THIS BLOCK OF CODE

 ENDIF

 CALL MPI_FINALIZE (ierr)

 END PROGRAM mat_vec

 O

 O

✦ The code is clearly partitioned into a master part and a slave part

Point-to-point communication. Matrix-vector multiplication.

 DO j = 1,cols ! make an arbitrary matrix a and vector b
 b(j) = 1.0_8
 DO i = 1,rows
 a(i,j) = DBLE (i+j)
 ENDDO
 ENDDO
 CALL MPI_BCAST (b,cols,MPI_DOUBLE_PRECISION,master,MPI_COMM_WORLD,ierr)

 count_rows = 0
 DO i = 1,npe_wrld-1
 DO j = 1,cols
 buffer(j) = a(i,j)
 ENDDO
 CALL MPI_SEND (buffer,cols,MPI_DOUBLE_PRECISION,i,i,MPI_COMM_WORLD,ierr)
 count_rows = count_rows+1
 ENDDO

✦ The first part of master code looks like this:

 DO i = 1,rows
 CALL MPI_RECV (ans,1,MPI_DOUBLE_PRECISION, &
 MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)
 sender = status(MPI_SOURCE)
 row_index = status(MPI_TAG) ! tag value in status is the row index
 c(row_index) = ans
 IF (count_rows < rows) THEN ! more work to be done. send another row
 DO j = 1,cols
 buffer(j) = a(count_rows+1,j)
 ENDDO
 CALL MPI_SEND (buffer,cols,MPI_DOUBLE_PRECISION, &
 sender,count_rows+1,MPI_COMM_WORLD,ierr)
 count_rows = count_rows+1
 ELSE ! tell sender that there is no more work
 CALL MPI_SEND (MPI_BOTTOM,0,MPI_DOUBLE_PRECISION,sender,0,MPI_COMM_WORLD,ierr)
 ENDIF
 ENDDO

Point-to-point communication. Matrix-vector multiplication.

✦ The second part of master code looks like this:

 CALL MPI_BCAST (b,cols,MPI_DOUBLE_PRECISION,master,MPI_COMM_WORLD,ierr)
 DO
 CALL MPI_RECV (buffer,cols,MPI_DOUBLE_PRECISION,master, &
 MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)
 IF (status(MPI_TAG)==0) EXIT ! there is no more work
 row_index = status(MPI_TAG) ! tag value status is the row index
 ans = 0.0_8
 DO i = 1,cols
 ans = ans + buffer(i)*b(i)
 ENDDO
 CALL MPI_SEND (ans,1,MPI_DOUBLE_PRECISION, &
 master,row_index,MPI_COMM_WORLD,ierr)
 ENDDO

Point-to-point communication. Matrix-vector multiplication.

✦ The slave code looks like this:

Point-to-point communication. Matrix-vector multiplication.

✦ Running the code
✦ Slower with more processes...

Nonblocking Send

✦ A nonblocking send call initiates the send operation, but does not
complete it. The nonblocking send call will return before the
message was copied out of the send buffer.

✦ A separate send complete call is needed to complete the
communication, i.e., to verify that the data has been copied out of
the send buffer.

✦ With suitable hardware, the transfer of data out of the sender
memory may proceed concurrently with computations done by the
sender after the send was initiated and before it completed.

✦ MPI_ISEND had the following syntax:

MPI_ISEND (BUFFER,DATA_COUNT,DATA_TYPE,
DEST,TAG,COMM,REQUEST)

where the REQUEST argument determines if the operation has
completed.

Nonblocking Receive

✦ A nonblocking receive call initiates the receive operation, but does
not complete it. The call will return before a message is stored into
the receive buffer.

✦ A separate receive complete call is needed to complete the receive
operation and verify that the data has been received into the receive
buffer.

✦ With suitable hardware, the transfer of data into the receiver
memory may proceed concurrently with computations done after
the receive was initiated and before it completed.

✦ MPI_IRECV had the following syntax:

MPI_IRECV (BUFFER,DATA_COUNT,DATA_TYPE,
SOUR,TAG,COMM,REQUEST)

where the REQUEST argument determines if the operation has
completed.

Completion of Nonblocking Send and Receive

✦ The call MPI_WAITALL blocks until all communication operations
associated with active handles in the list are completed, and returns
the status of all these operations.

✦ MPI_WAITALL had the following syntax:

MPI_WAITALL(COUNT,ARRAY_OF_REQUESTS,
ARRAY_OF_STATUSES,IERR)

where the REQUEST argument determines if the operation has
completed.

Domain decomposition

✦ Here we will demonstrate the method of parallelization called
domain decomposition. We will partition the physical domain into
pieces and assign each piece to a process. Each process will
communicate with it neighboring domain using message passing.

✦ We will numerically solve the Poisson equation.

✦ The continuous form of the problem:

 on the interior of the unit square

 on the boundary

✦ This simple PDE can be used as a template for more complicated
problems. The communication patterns here are the same as more
complex problems.

0,1[]× 0,1[]
α x, y() = γ x, y()
∇2α = β x, y()

Discrete Poisson problem: The grid

✦ The solution is approximated at discrete points. These points called
a grid.

✦ The positions of the grid points are given by:

✦ The notation refers to approximation of at

✦ The distance between grid points is given by

xi =

i
n +1

,i = 0,K,n +1

yj =

j
n +1

, j = 0,K,n +1

α i, j xi , yj()α

h = 1
n +1

xi , yj()

Discrete Poisson problem: The discrete equation

✦ The continuous equation

✦ The discrete equation

✦ Solve for gives the Jacobi iteration

α i−1, j − 2α i, j +α i+1, j

h2
+
α i, j−1 − 2α i, j +α i, j+1

h2
= βi, j

∂2α
∂x2

+
∂2α
∂y2

= β

α i, j

α i, j
(k+1) =

1
4
α i−1, j
(k) +α i+1, j

(k) +α i, j−1
(k) +α i, j+1

(k) − h2βi, j
(k)()

Discrete Poisson problem: Domain decomposition

✦ For the case when n = 8, the 10 X 10 grid looks like this:

- Solid green is a interior grid points

- open circle is a boundary point

✦ Suppose we divide the grid to
four processes.

i,j+1

i,j-1

i-1,j i+1,ji,j

proc0 proc1

proc2 proc3

proc0

sent from proc 2

sent from
 proc 1

✦ Then, for example, proc0 is
assigned an array 6X6 like this:

Discrete Poisson problem: Algorithm

✦ The algorithm for the Jacobi iteration is given by:

1. Communicate information to fill ghost cells

a. Initiate nonblocking sends

b. Initiate nonblocking receives

c. Wait for message to be completed

2. Perform one sweep of the Jacobi iteration

3. GOTO 1.

Where am I? Who are my neighbors?
It is useful to make a process map. This can be used to determine
position of the local process relative to other processes

INTEGER,PARAMETER :: &
 n = 256, &! global number of grid points along an edge
 iblk_max = 4, &! number domain decomposition blocks in the i-direction
 jblk_max = 4, &! number domain decomposition blocks in the j-direction
 i_max = n/iblk_max, &! local number of grid-points in the i-direction
 j_max = n/jblk_max ! local number of grid-points in the j-direction

INTEGER :: i,j,ib,jb,proc,iblk,jblk,nghbr_count,req,edge,iter
INTEGER :: proc_map(0:iblk_max+1,0:jblk_max+1),nghbr_list(4)

! set proc_map
 proc_map(:,:) = -1
 proc = 0
 DO jb = 1,jblk_max
 DO ib = 1,iblk_max
 proc_map(ib,jb) = proc; proc = proc + 1;
 ENDDO
 ENDDO

! determine position of the local process on the proc_map
 iblk = 1 + MOD (rnk_wrld,iblk_max)
 jblk = 1 + (rnk_wrld-MOD (rnk_wrld,iblk_max))/iblk_max

! count the number of neighboring blocks
 nghbr_list(:) = (/ proc_map(iblk+1,jblk),proc_map(iblk,jblk+1), &
 proc_map(iblk-1,jblk),proc_map(iblk,jblk-1) /)

 nghbr_count = COUNT (nghbr_list(:) /= -1)

 O

Initiate sends with MPI_ISEND
Check each edge for a neighbor, load buffers and post sends

 TYPE buf_node
 REAL (KIND=SELECTED_REAL_KIND (12)),POINTER :: send(:),recv(:)
 END TYPE buf_node
 TYPE (buf_node) :: buf(4)

! allocate memory for send and recv buffers
 ALLOCATE (buf(1)%send(j_max),buf(1)%recv(j_max)) ! east
 ALLOCATE (buf(2)%send(i_max),buf(2)%recv(i_max)) ! north
 ALLOCATE (buf(3)%send(j_max),buf(3)%recv(j_max)) ! west
 ALLOCATE (buf(4)%send(i_max),buf(4)%recv(i_max)) ! south
 ALLOCATE (send_req(nghbr_count))

! post sends
 req = 0; send_req(:) = -999
 DO edge = 1,4
 IF (nghbr_list(edge) /= -1) THEN
 IF (edge == 1) buf(edge)%send(:) = alph(i_max,1:j_max) ! east
 IF (edge == 2) buf(edge)%send(:) = alph(1:i_max,j_max) ! north
 IF (edge == 3) buf(edge)%send(:) = alph(1,1:j_max) ! west
 IF (edge == 4) buf(edge)%send(:) = alph(1:i_max,1) ! south

 msg_tag = (npe_wrld+1)*rnk_wrld + nghbr_list(edge) + 1
 req = req + 1

 CALL MPI_ISEND (buf(edge)%send,SIZE (buf(edge)%send(:)), &
 MPI_DOUBLE_PRECISION,nghbr_list(edge),msg_tag, &
 MPI_COMM_WORLD,send_req(req),ierr)
 ENDIF
 ENDDO

 O

 O

Initiate receives with MPI_IRECV
Check each edge for a neighbor, clear buffers and post receives

! post receives
 req = 0; recv_req(:) = -999
 DO edge = 1,4
 IF (nghbr_list(edge) /= -1) THEN
 buf(edge)%recv(:) = 0.0

 msg_tag = (npe_wrld+1)*nghbr_list(edge) + rnk_wrld + 1
 req = req + 1

 CALL MPI_IRECV (buf(edge)%recv,SIZE (buf(edge)%recv(:)), &
 MPI_DOUBLE_PRECISION,nghbr_list(edge),msg_tag, &
 MPI_COMM_WORLD,recv_req(req),ierr)
 ENDIF
 ENDDO

Wait for messages to be completed with MPI_WAITALL
Check each edge for a neighbor, clear buffers and post receives

! allocate send_req, recv_req, send_status, recv_status
 ALLOCATE (send_req(nghbr_count))
 ALLOCATE (recv_req(nghbr_count))
 ALLOCATE (send_status(MPI_STATUS_SIZE,nghbr_count))
 ALLOCATE (recv_status(MPI_STATUS_SIZE,nghbr_count))

! wait for messages to complete
 send_status(:,:) = -999; recv_status(:,:) = -999;
 CALL MPI_WAITALL (nghbr_count,send_req,send_status,ierr)
 CALL MPI_WAITALL (nghbr_count,recv_req,recv_status,ierr)

 O

Discrete Poisson problem: Set-up

Consider

α x, y() = sin 4x2 + 5y2()

β x, y() = 18cos 4x2 + 5y2()− 64x2 sin 4x2 + 5y2()−100y2 sin 4x2 + 5y2()
then

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1
-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1-100

0

100

0

0.2

0.4

0.6

0.8

