
Fortran 90 Seminar
Spring 2007

Overview

Presented by Mark Branson, Ross Heikes
and Don Dazlich

Everything from the basics to advanced
topics like makefiles, optimization,
parallelization.

Suggestions from the audience???

Presentation materials and example codes
will be made available at the website.

What is Fortran?

general-purpose programming language mainly
intended for mathematical computations in
engineering.

Fortran is an acronym for FORmula TRANslator

first-ever high-level programming language, using the
first compiler ever developed

initially developed by a team of programmers at IBM
lead by John Backus, and first published in 1957.

Why learn Fortran?

Fortran is the dominant programming language used in
engineering applications AND the most enduring
computer programming language in history!

From time to time, experts have predicted the
extinction of Fortran, and these predictions have
always failed.

One of the main reasons it has endured: software
inertia.

Reliable software translation is very difficult and
EXPENSIVE!

History of Fortran

History of Fortran (2)
Fortran I : contained 32 statements

Fortran II (1958) : subroutine, function and end

Fortran III (1958), IV (1962)

Fortran 66 - 1966, when new ASA (now ANSI)
standard was published

do loops, data statement, GOTO statement

Fortran 77

block if statements (if-elseif-else), character data
type, implicit none, etc.

History of Fortran (3)
Fortran 90 - major revision

released as an ANSI standard in 1992

free-form source input, modules, recursive
procedures, derived/abstract data types, dynamic
memory allocation, pointers, case construct, and
much much more!!!

inline comments

identifiers up to 31 characters in length

new and enhanced intrinsic procedures

History of Fortran (3)

Fortran 95

FOR ALL and nested WHERE constructs

Fortran 2003 - most recent standard

derived type enhancements, object-oriented
programming support, asynchronous data transfer

Fortran 2008 - underway

co-array fortran (parallel processing model), BIT
data type

Where do you fit?

Most if not all of you fall into one of these
two categories:

Little to no experience with Fortran.

Have programmed with Fortran 77 for
years, but haven’t really learned Fortran 90.

Try to address both groups.

Motivation
What’s wrong with Fortran77?

No user-defined data types or data structures
(except the COMMON block).

Too easy to make mistakes which the compiler could
not detect, especially when calling subroutines.

• Study of more than 4 million lines of professional
Fortran showed that 17% of procedure interfaces
were defective.

Poor control structures made it hard to avoid using
GOTOs and labels.

Motivation (2)
Archaic features left over from the punch-card era:

fixed-format lines

statements all in upper-case

variable names limited to 6 characters

 DO 5005 I = 1,np2jm2
 TEMV(I,1)= CP * BPS(I,1) * VENTFC(I,1)
 FHS(I,1) = FSS(I,1) + HLTM * FWS(I,1)
 FSVS(I,1) = TEMV(I,1) * THVGM(I,1)
 PSBLOC(I,1)=PS(I,1)-PB(I,1)
 PBBPSK(I,1)=BPB(I,1)/BPS(I,1)
 TS(I,1) =HM(I,1)-GRAV*ZS(I,1)
 TS(I,1) =(TS(I,1)-HLTM*WM(I,1))*CPINV
 ZB(I,1) =ZS(I,1)+CPBG*TS(I,1)*(1. e 0-PBBPSK(I,1))
 5005 CONTINUE
C
 CALL VAMAX(1. e 0,1,SPEEDM,np2jm2)
 CALL R8BTGT(PC,np2jm2,PB,np2jm2,STRTS)
C
 DO 5006 I = 1,np2jm2
 TB(I,1)=TS(I,1)*PBBPSK(I,1)
 5006 CONTINUE

Our First Program
temperature conversion program

two distinct areas:

specification part - declare all variables

execution part - reads in data, calculates new
temperature values, and writes them out.

ALWAYS use “implicit none”. This means that all
variables must be declared! Bottom line: It helps the
compiler find your errors!

other variable types: integer, character, logical and
complex

Basic Format and Syntax

Fortran is case-insensitive.

Symbolic names can be up to 31 characters long, and
may include underscores as well as digits.

temperature_in_fahrenheit = temperature_in_celsius * 1.8 + 32.0
waveFunction = pointNum * basisFuncNum ! mixed case works well, too.

Semi-colons can be used to separate two or more
statements on the same line.

sumx = 0.0; sumy = 0.0; sumz = 0.0

End-of-line comments start with an exclamation mark
(but must not be in column 6 of fixed-format code).

Character constants may be enclosed
either in a pair of apostrophes or double-
quotes:

write(*,*) “If it ain’t broke, don’t fix it”

Relational operators may be given in old or
new forms.

old form: .GE. .GT. .EQ. .NE. .LE. .LT.

new form: >= > == /= <= <

Free-format layout

Most compilers assume free-format if the source file
has an extension of .f90 and fixed-format otherwise.

Can usually override with -free and -fixed switches.

Statements can appear anywhere on a line, and lines
may be up to 132 characters long.

Comments start with an exclamation mark “!”

To continue a statement put an ampersand at the end
of each incomplete line:

call predict (mercury, venus, earth, & ! comment allowed here
 mars, jupiter, saturn, uranus, neptune, pluto)

If the line-break splits a name or constant, then a
comment is not allowed, and the next line must start
with another ampersand:

write(*,*) ‘Colorado State University, Department of &
 &Atmospheric Science” ! NO comment on preceding line

Spaces are significant in free-format code: embedded
spaces are not allowed in variable names or
constants, but a space is generally required between
two successive words

million = 1 000 000 ! valid in fixed-layout lines only

Indentation makes code much easier to read! There’s
no hard and fast rules about indentation, but
indenting by 2-5 spaces, or with a tab, is good
practice.

How to write a computer program

There are four main steps:

1. Specify the problem

2. Analyze and break down into a series of steps
toward solution

3. Write the fortran 90 code

4. Compile and run.

It may be necessary to iterate between steps 3 and 4
to remove any mistakes. This testing phase is very
important.

A Quadratic Equation Solver: The Algorithm

The problem: Write a program to calculate the roots
of a quadratic equation of the form:

The roots are given by the following formula:

ax2 + bx + c = 0

x =
−b ± b2 − 4ac

2a

The algorithm

1. Read values of a, b and c.

2. If a is zero, then stop as we do not have a quadratic.

3. Calculate the value of the discriminant

4. If D is zero than there is one real root:

5. If D is greater than zero, than there are two real
roots:

6. If D is less than zero, than there are two complex
roots:

7. Print solution

D = b2 − 4ac
−b
2a

−b + D() / 2a −b − D() / 2a

−b + i −D() / 2a −b − i −D() / 2a

