
Introduction to
Makefiles

Introduction

A makefile is just a set of rules to determine which
pieces of a large program need to be recompiled, and
issues commands to recompile them.

For large programs, it’s usually convenient to keep each
program unit in a separate file. Keeping all program
units in a single file is impractical because a change to a
single subroutine requires recompilation of the entire
program, which can be time consuming.

When changes are made to some of the source files,
only the updated files need to be recompiled, although
all relevant files must be linked to create the new
executable.

Example: program abc.f, and external subroutines a.f,
b.f and c.f. Let’s compile these in the usual command-
line method:

> f90 -o abc abc.f a.f b.f c.f (one fell swoop)

The compile step alone is done by specifying the -c flag
in the compile command:

> f90 -c abc.f a.f b.f c.f (compile only and keep the .o files)
> f90 -o abc abc.o a.o b.o c.o (link to create the executable)

Suppose we later modified b.f and needed to recompile:

> f90 -c b.f (compile only the file b.f)
> f90 -o abc abc.o a.o b.o c.o (link to create the new executable)

With such a small example like this, recompiling
everything is not that time consuming. But with more
and more program units and/or when optimization is
used, the time savings can be substantial.

Basic makefile structure: a list of rules with the
following format:

target ... : prerequisites ...

<TAB> construction-commands

A “target” is usually the name of a file that is
generated by the program (e.g , executable or object
files). It can also be the name of an action to carry out,
like “clean”.

A “prerequisite” is a file that is used as input to create
the target.

Here’s a simple makefile for our “abc” example:

makefile : makes the ABC program

abc : a.o b.o c.o abc.o

 f90 -o abc abc.o a.o b.o c.o

abc.o : abc.f90

 f90 -O -c abc.f90

a.o : a.f90

 f90 -O -c a.f90

b.o : b.f90

 f90 -O -c b.f90

c.o : c.f90

 f90 -O -c c.f90

By default, the first target listed in the file (the
executable abc) is the one that will be created when
the make command is issued.

Since abc depends on the files a.o, b.o and c.o, all of
the .o files must exist and be up-to-date. make will
take care of checking for them and recreating them if
necessary. Let’s give it a try!

Makefiles can include comments delimited by hash
marks (#). A backslash (\) can be used at the end of
the line to continue a command to the next physical
line.

How Does Make Work?

The make utility compares the modification time of the
target file with the modification times of the
prerequisite files. Any prerequisite file that has a more
recent modification time than its target file forces the
target file to be recreated.

By default, the first target file appearing in the makefile
is the one that is built. Other targets are checked only
if they are prerequisites for the initial target.

Other than the fact that the first target in the
makefile is the default, the order of the targets does
not matter. The make utility will build them in the
order required.

More MAKE Functionality

By default, if you just type make, then the make utility
looks for a file called makefile or Makefile. Use make -f
<mymakefile> to explicitly define what file to use.

Use make -n to display which commands will be used to
build the program but it will not actually execute them.

Use a “phony target” to code in a clean-up section.

Define variables for compiler type, compiler flags, list of
all objects, etc. Note that variables names in make are
case-sensitive!

makefile2 : let’s use some makefile variables
objects = a.o b.o c.o abc.o
Comp = /usr/bin/f95 # NAG compiler
#Comp = f90 # Absoft compiler
FFLAGS = -g
#FFLAGS = -O

abc : $(objects)

 $(Comp) -o abc $(objects)

abc.o : abc.f90

 $(Comp) $(FFLAGS) -c abc.f90

a.o : a.f90

 $(Comp) $(FFLAGS) -c a.f90

b.o : b.f90

 $(Comp) $(FFLAGS) -c b.f90

c.o : c.f90

 $(Comp) $(FFLAGS) -c c.f90

clean section (phony target)
clean :

 rm abc $(objects)

Use a general pattern rule for the compilation steps:

makefile3 : let’s use some makefile variables
objects = a.o b.o c.o abc.o
Comp = /usr/bin/f95 # NAG compiler
#Comp = f90 # Absoft compiler
FFLAGS = -g
#FFLAGS = -O

abc : $(objects)

 $(Comp) -o abc $(objects)

%.o : %.f90

 $(Comp) ${FFLAGS} -c $<

Here we have made use of an automatic variable. $< is
the name of the first prerequisite.

We can take this one step further and rely on make’s
implicit rule for compiling .f files into .o files:

makefile : use implicit rule for compile step
objects = a.o b.o c.o abc.o
FC = /usr/bin/f95 # NAG compiler
#FC = f90 # Absoft compiler
FFLAGS = -g
#FFLAGS = -O

abc : $(objects)

 $(FC) -o abc $(objects)

Chances are your program objects are not going to be
standalone entities like this simple example (i.e., there
will be interdependencies among your various source
files) so you won’t be able to take advantage of these
features. Let’s look at example 2.

Module compile/make issues

1. The order of compilation matters! If module B uses
module A, then module A must be compiled first. This
means that developing and maintaining dependency
lists can be a bit cumbersome.

There are some free scripts that try to handle this
for you. EXAMPLE: fmkmf.pl

2. When a module source file is edited BUT the interface of
the module does not change, make will still
unnecessarily recompile modules that use the given
module!!

Cascading Recompilation

When modules are compiled, they produce not only an
object file (.o) but also a module information file (.mod).

Make uses file time stamps to determine whether
dependencies need recompiling. What is required to
prevent the unnecessary cascading recompilation of
modules is the time when the interface of a module was
last change. That is not necessarily the last time the
module was compiled.

Workarounds: 1) recursive make 2) touch files

