
Parallel Programming
Introduction

Parallel programming is using multiple cpus
concurrently.

Reasons for parallel execution:

1. shorten execution time

2. to permit a larger problem (memory resources)

The days of waiting for the next-generation chip to
improve your serial-code throughput are gone.

Amdahl’s Law
Describes the time speedup one can expect as a
function of the number of processors used and the
fraction of parallel code:

speedup = 1/(1-p+p/N)

N - number of procs

p - fraction of
parallel code

Types of Parallel Machines
Symmetric Multiprocessors (SMP) - multiple
cpus sharing memory resource, bus connection -
kaibab, desktop Macs

Types of Parallel Machines

Distributed computing - individual computing
elements each with their own memory, and
network connection - Cray T3E

Types of Parallel Machines
Clusters - combine the above two models. SMP
nodes can be connected by network - slikrock,
saddleback

Node Node Node Node

Types of Parallelism

Process Parallelism (MPMD) - a code may
contain different segments that can be
computed concurrently. Example: ocean, land,
and ice parts of climate model, or convection
and radiation parameterizations in an
atmosphere.

Low overhead, but often limits on how many
procs can be used.

Types of Parallelism

Data Parallelism (SPMD) - the same code works
on different datastreams. For example, dividing
a global domain into subdomains - each
processor executes all the code for an individual
subdomain.

Data and process parallelism may be employed
together.

Parallel Programming
Paradigms: Shared Memory
Shared memory techniques launch threads
during execution.

Automatic Parallelizers - just turn on the
compiler switch - it finds the do loops that can
be done in parallel.

Compiler Directives - Open MP is the current
standard. User inserts ‘comments’ in code that
compiler recognizes as parallelization
instructions. Modest changes to code.

Only works with shared memory.

Parallel Programming
Paradigms: Message Passing
Can work with both distributed and shared
memory.
MPI is the standard, several packages exist:
MPICH2, lam-mpi, open-mpi.
Library calls explicitly control the parallel
behavior - extensive user rewrite of code. Code
is explicitly instructed to send and receive
messages from the other processes.
Ross will discuss in much more detail next few
weeks.
Message passing and shared memory
techniques can be used in a hybrid-mode.

Parallel Programming
Concepts

Synchronization - making sure all code gets to
a certain point before proceeding.

Load balancing - trying to keep processes from
being idle while others are computing.

Granularity - how much work is in each parallel
section.

Open MP - a Brief Intro

Tutorial: http://www.osc.edu/hpc/training/openmp/big/fsld.
002.html

OpenMP: http://www.openmp.org/

Open MP - first steps

Identify parallel do-loops. Each do loop carries
overhead so it can be helpful to have a larger
outer do-loop for parallelism.

Identify functionally parallel regions (Think
F90 case construct as an analog).

Identify shared and private data

Identify ‘race conditions’ where shared data can
change program output unexpectedly.

Open MP - parallel do loop

Open MP - reduction

Open MP - sections

Open MP - data dependency

Open MP - run time

