Parallel Programwming
Infroduction

* Parallel programwing is using multiple cpus
concurrently.

* Reasons for parallel execution:
1. shorten execution time
2. to perwit a larger problem (mewory resources)

* The days of waiting for the next-generation chip to
improve your serial-code throughput are gone.

Awdabhls Law

* Pescribes the time speedup one can expect as a
function of the number of processors used and the
fraction of parallel code:

speedup = 1/(1-p+p/N)
N - number of proes

p - fraction of
parallel code

mpeedup

12

10

Amdahl’ & 1aw:

FParallel speedup vs. Sequentizal fraction

— —a—0. =

——0.1

—a— 0.5
——Linecar

Types of Parallel Machines

* Symmetric Multiprocessors (SMP) - multiple
cpus sharing memory resource, bus connection -
kaibabh, desktop Macs

PE PE PE PE

Shared Memory

Types of Parallel Machines

* Pistributed computing - individual computing
elements each with their own mewory, and
network connection - Gray T3t

Memory| |Memory| |Memory| [Memory

PE

PE

PE

PE

Network

Types of Parallel Machines

* Clusters - combine the above two models. SMP
nodes can be connected by network - slikrock,
saddleback

Memory| |Memory| |Memory| [Memory

Network

Types of Parallelism

* Process Parallelism (MPMD) - a code may
contain different segments that can be
computed concurrently. Example: ocean, land,
and ice parts of climate model, or convection
and radiation parameterizations in an
atmosphere.

* Low overhead, but often limits on how many
procs can be used.

Types of Parallelism

* Pata Parallelism (SPMD) - the same code works
on different datastreawms. For example, dividing
a global domain into subdomains - each
processor executes all the code for an individual
subdomain.

* Data and process parallelism may be employed
together.

Parallel Programwming
Paradigms: Shared Mewmory

* Shared memory techniques launch threads
during execution.

* Autowatic Parallelizers - just turn on the
compiler switch - it finds the do loops that can
be done in parallel.

* Cowpiler Directives - Open MP is the current
standard. User inserts comments’ in code that
compiler recognizes as parallelization
instructions. Modest changes to code.

* Only works with shared memory.

Parallel Programwing
Paradigms: Message Passing

* Oan work with both distributed and shared
memory.

* MPI is the standard, several packages exist:
MPICH2, lam-wpi, open-wpi.

* Library calls explicitly control the parallel
behavior - extensive user rewrite of code. Code
is explicitly instructed to send and receive
messages trom the other processes.

* Kosi will discuss in much wmore detail next few
weeks.

* Message passing and shared memory
techniques can be used in a hybrid-mode.

Parallel Programming
Concepts

* Synchronization - making sure all code gets to
a certain point before proceeding.

* Load balancing - trying to keep processes from
being idle while others are computing.

* Granularity - how much work is in each parallel
section.

Open MP - a Brief Intro

* OpenMP is an API for writing multithreaded applications in a shared memory
environment

» It consists of aset of compiler directives and library routines
» Relatively easy to create multi-threaded applications in Fortran, C and C++
Standardizes the last 15 or so years of SMP development and practice

Master thread

X

Pk

Parallel regions

Tutorial: http:/www.osc.edu/hpe/training/openmp/big/fsld.
002.htwl
OpenMP: hitp:/www.openmp.org/

Open MP - first steps

* |dentify parallel do-loops. Each do loop carries
overhead so it can be helpful to have a larger
outer do-loop for parallelism.

* |dentify functionally parallel regions (Think
FI0 case construct as an analog).

* |dentify shared and private data

* ldentify race conditions’ where shared data can
change program output unexpectedly.

Open MP - parallel do loop

ctomp do shared(x) private (i)
cbompé& schedule({static)
do i = 1, 1000
x(i)l=a
enddo

thread 0 (1= 1,250)

thread 1 (i =251,500)

thread 0

thread 3 (i = 751,1000)

Open MP

Allows safe global calculation or
comparison.

A private copy of each listed variable
is created and initialized depending on
operatororintrinsiceg.,0
for +).

Partial sums and local mins are
determined by the threads in parallel.

Partial sums are added together from
one thread at a time to get gobal sum.

Local mins are compared from one
thread at atime to get gmin.

- reduction

cSomp do shared(x) private{i)
cSomps reduction (+:sum)
do 1 =1, N
sum = sum + (1)
enddo

cSomp do shared(x) private (i)
cSomps reduction {min:gmin)
do 1 = 1,H
gmin =
end do

min{gmin,x{i}))

Open MP - sections

cbomp parallel
csomp sections

cSomp section

call computeXpart()
cSomp section

call computeYpart()
cSomp section

call computeZpart()

cSomp end sections
cbomp end parallel

call sumi)

» FEach parallel section is run on a separate thread.
* Allows functional decomposition.

Open MP - data dependency

* Only variables that are written in one Isthere a dependency here?
iteration and read in another iteration
will create data dependencies.

* A variable cannot create a dependency do 1 = 2,N,2

unless it 1s shared. enc?c%é) = c*a(i-1)
+ Often data dependencies are difficult to
identity. APO can help by identifying
the dependenci tomatically.
¢ dependencies antomatically Thread
a| a2) = c*a[l]l
Recurrence:
1 a(3)] = c*alz]
do i = 2,5
ali) = c*ra(i-1) 2 afd) = c*al3)]
enddo
3 a(5) = C*C(4JI
>

Open MP - run time

OpenMP Environment Variables

« OMP NUM THREADS
— Setsthe number of threads requested for parallel regions.
« OMP SCHEDULE

— Set to astring value which controls parallel loop scheduling at runtime.
— Only loops that have schedule type RUNTIME are atfected.

« OMP DYNAMIC

— Enables or disables dynamic adjustment of the number of threads actually used in a
parallel region (due to system load).

— Defanlt value 1z implem entation dependent.

