
MPI Part 1
References:

Using MPI. Gropp, Lusk Skjellum

http://www.mpi-forum.org/docs/mpi-11-html/node182.html

What is MPI?

1) MPI allows a collection of processes to communicate with
messages.

2) MPI is a library of subroutines called from Fortran, C and C++.
Programs are compiler with ordinary compilers and linked with
the MPI library.

3) MPI is a specification which is independent from particular
implementations. An MPI program should be portable to any
vendors hardware that supports MPI.

A minimal message-passing model
The processes execute in parallel and have separate address spaces.

Communication is cooperative. A message requires one process to
execute a send command, and one process to execute a receive
command.

Information from one process’s address space (memory) is transfered
to another address space (memory) using a message.

The two processes involved in the communication must agree upon a
message tag to distinguish a message from other messages.

Network
Proc2

Proc1

I am proc1.
I will send to proc2

using tag=1

I am proc2.
I will receive from proc1

using tag=1

23
Proc3 Proc4 23

MPI_COMM_WORLD

COMM_2COMM_1

Communicators
Groups of processes are called communicators.

•• The default communicator is called MPI_COMM_WORLD. This
communicator contains all the processes in the current MPI universe.

•• MPI allows for the formation of communicators within the global
communicator.

•• Message tags are defined within the context of a communicator.

Proc2
Proc1

Proc3

Proc4

Proc5

MPI_COMM_WORLD

COMM_1 COMM_2

Rank
Processes are identified within a communicator by their rank

•• Rank is an integer

•• Rank defined within the context of a communicator.

•• If a communicator contains n processes, then the ranks are integers
from 0 to n-1.

Proc1
rnk_wrld:0 Proc2

rnk_wrld:1

Proc3
rnk_wrld:2 Proc4

rnk_wrld:3

Proc5
rnk_wrld:4

rnk_comm_2:0
rnk_comm_2:1

rnk_comm_2:2rnk_comm_1:0
rnk_comm_1:1

The “hello world” Program
Important features of the hello_world program

1. Use the mpi module, or include the include file called mpif.h

2. Initialize the MPI environment.

3. Determine how many processes are in the current MPI environment.

4. Determine rank within the MPI_COMM_WORLD communicator

5. Terminate the MPI environment

PROGRAM hello_world
USE mpi

IMPLICIT NONE
INTEGER :: npe_wrld, &! number of processes within the world communicator
 rnk_wrld, &! rank of process within the world communicator
 ierr

CALL MPI_INIT (ierr) ! initialize MPI environment
CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr) ! determine world size
CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr) ! determine rank within world

PRINT "(A19,I3,A4,I4)"," hello from proc = ",rnk_wrld," of ",npe_wrld

CALL MPI_FINALIZE (ierr) ! terminate MPI environment

END PROGRAM hello_world

Running the hello_world Program
PROGRAM hello_world
USE mpi

IMPLICIT NONE
INTEGER :: npe_wrld, &! number of processes within the world communicator
 rnk_wrld, &! rank of process within the world communicator
 ierr

CALL MPI_INIT (ierr) ! initialize MPI environment
CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr) ! determine world size
CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr) ! determine rank within world

PRINT "(A19,I3,A4,I4)"," hello from proc = ",rnk_wrld," of ",npe_wrld

CALL MPI_FINALIZE (ierr) ! terminate MPI environment

END PROGRAM hello_world

The slightly modified “hello world” Program
Important features of the slightly modified hello_world program

1. Use the mpi commands MPI_GET_PROCESSOR_NAME to determine
where a processes is actually running.

2. Use the mpi commands MPI_WTICK and MPI_WTIME to time code

3. Use the mpi commands MPI_BARRIER write output in order.

 PROGRAM hello_world_2
 USE mpi
 IMPLICIT NONE

 INTEGER :: npe_wrld, &! number of processes within the world communicator
 rnk_wrld, &! rank of process within the world communicator
 i,j,n,name_len,ierr
 REAL (KIND=SELECTED_REAL_KIND (12)) :: wall_tick,time_start,time_end,x

 CHARACTER (LEN=128) :: proc_name

 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr)

The slightly modified “hello world” Program
Code (continued) for the slightly modified hello_world program

 CALL MPI_GET_PROCESSOR_NAME (proc_name,name_len,ierr)

 wall_tick = MPI_WTICK () ! wall clock timer increment in seconds
 IF (rnk_wrld == 0) PRINT "(A13,F12.8)"," wall_tick = ",wall_tick

! do some useless work
 time_start = MPI_WTIME () ! wall clock timer start
 x = 0.0_8
 DO j = 1,5000
 DO i = 1,5000
 x = x + SIN (x+FLOAT (rnk_wrld))
 ENDDO
 ENDDO
 time_end = MPI_WTIME () ! wall clock timer stop

! write the results
 DO n = 0,npe_wrld-1
 IF (rnk_wrld == n) THEN
 PRINT "(A19,I3,A4,I4,A12,A16,A10,F8.5,A10,F12.8)", &
 " hello from proc = ",rnk_wrld," of ",npe_wrld, &
 " running on ",TRIM (proc_name), &
 " time = ",time_end-time_start," answer = ",x
 ENDIF
 CALL MPI_BARRIER (MPI_COMM_WORLD,ierr)
 ENDDO

 CALL MPI_FINALIZE (ierr)

 END PROGRAM hello_world_2

Collective Communication: Scatter

Transfer information for one process to many (scatter) or collect
information from many processes to one (gather)

MPI_BCAST broadcasts a message from the process with rank
ROOT to all processes of the communicator group COMM, itself
included. It is called by all members of group using the same
arguments. On return, the contents of root's send buffer has been
copied to the receive buffer on all processes.

MPI_BCAST (buffer,data_count,data_type,root,comm)

Collective Communication: Gather
MPI_GATHER: Each process (root process included) sends the
contents of its send buffer to the root process. The root process
receives the messages into the receive buffer and stores them in
rank order.

MPI_GATHER(send_buffer,send_count,send_type,
recv_buffer,recv_count,recv_type,root,comm,ierr)

MPI_REDUCE: Combines the elements in the send buffer of each
process in the communicator group comm, using the operation op, and
returns the combined value in the receive buffer of the process with
rank root.

MPI_REDUCE(send_buffer,recv_buffer,send_count,
send_type,op,root,comm,ierr)

where op can be several things including MPI_MAX(MPI_MIN) for
maximum (minimum), MPI_SUM for summation.

An example with MPI_BCAST and MPI_REDUCE
Find an approximation for π using numerical integration

The algorithm for the code:

1. The root process will read the global number of intervals and
broadcast the number to the other processes using MPI_BCAST.

2. Each process will then determine its subinterval using its rank in
the communicator and integrate to find its subarea

3. Using MPI_REDUCE with the option MPI_SUM the subareas are
summed to find the total area

!
0

1 4
1 ! x2

"x # Π

0.25 0.5 0.75 1

1

2

3

4

proc1 proc2 proc3 proc4

0.25 0.5 0.75 1

1

2

3

4

 PROGRAM pi
 USE mpi
 IMPLICIT NONE

 INTEGER :: npe_wrld,rnk_wrld,n,i,ierr
 REAL (KIND=SELECTED_REAL_KIND (12)) :: &
 del_x,x_left,pi_piece,pi_approx,time_start,time_end,x
! setup MPI
 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr)
! read and broadcast total number of intervals
 IF (rnk_wrld==0) THEN
 PRINT *, 'Enter the total number of intervals '
 READ (*,*) n
 ENDIF
 CALL MPI_BCAST (n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

 time_start = MPI_WTIME () ! wall clock timer start
! integrate subinterval
 del_x = 1.0_8/DBLE (n); x_left = DBLE (rnk_wrld)/DBLE (npe_wrld);
 pi_piece = 0.0_8
 DO i = 1,n/npe_wrld
 x = x_left + del_x*(DBLE(i)-0.5_8)
 pi_piece = pi_piece + del_x*(4.0_8/(1.0_8 + x**2))
 ENDDO
! gather the pieces of the pi
 CALL MPI_REDUCE(pi_piece,pi_approx,1,MPI_DOUBLE_PRECISION,MPI_SUM,0, &
 MPI_COMM_WORLD,ierr)
 time_end = MPI_WTIME () ! wall clock timer stop
! print the approximate value
 IF (rnk_wrld==0) THEN
 PRINT "(A12,F22.20)","pi_approx = ",pi_approx
 ENDIF
 CALL MPI_BARRIER (MPI_COMM_WORLD,ierr)
 PRINT "(A12,F14.10)","time = ",time_end-time_start

 CALL MPI_FINALIZE (ierr)

 END PROGRAM pi

Code the Pi example

Point-to-point communication
Here we send messages directly form one process to another.

MPI_SEND:

•• This is a blocking send. Control does not return until the message
data has been safely stored away so that the sender is free to
overwrite the send buffer.

•• The syntax of the blocking send operation is given below:

MPI_SEND (BUFFER,DATA_COUNT,DATA_TYPE,DEST,TAG,
COMM,IERR)

where

DEST is the rank of destination (integer) within COMM

TAG is the message tag (integer)

Point-to-point communication
MPI_RECV:

•• This is a blocking receive. Control returns only after the receive
buffer contains the newly received message.

•• The syntax of the blocking send operation is given below:

MPI_RECV (BUFFER,DATA_COUNT,DATA_TYPE,SOUR,TAG,COMM,
STATUS,IERR)

where

SOUR is the rank of source (integer) within COMM. The source can
also be specified as MPI_ANY_SOURCE

TAG is the message tag (integer). The tag can also be specified as
MPI_ANY_TAG

Point-to-point communication. Matrix-vector multiplication.

This is a “master-slave” algorithm. One process (the master) is
responsible for the coordinating the work of the others (the slaves).

We wish to perform a matrix-vector multiply in parallel.

The master’s algorithm for the code:

1. The master will broadcast the vector b to all the slaves.

2. The master will send one row of the matrix A to each slave.

3. The master then waits for the slave to perform the dot product
and return the element of c. At this time the master sends that
slave a new row of A. Continue until all rows are processed.

The slave’s algorithm for the code:

1. The slaves receive vector b from master.

2. Perform dot-products of b and rows of A. Send result to master

Ab = c

Point-to-point communication. Matrix-vector multiplication.

The code is clearly partitioned into a master part and a slave part

 PROGRAM mat_vec
 USE mpi
 IMPLICIT NONE

 INTEGER,PARAMETER :: rows=100,cols=100
 INTEGER :: npe_wrld,rnk_wrld,master,i,j,count_rows,sender,row_index,ierr
 INTEGER :: status(MPI_STATUS_SIZE)
 REAL (KIND=SELECTED_REAL_KIND (12)) :: &
 a(rows,cols),b(cols),c(rows),buffer(cols),ans,time_start,time_end

 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD,npe_wrld,ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD,rnk_wrld,ierr)

 master = 0

 IF (rnk_wrld==master) THEN ! THE MASTER DOES THIS BLOCK OF CODE

 ELSE ! THE SLAVES DO THIS BLOCK OF CODE

 ENDIF

 CALL MPI_FINALIZE (ierr)

 END PROGRAM mat_vec

 O

 O

Point-to-point communication. Matrix-vector multiplication.
The master code looks like this:

 DO j = 1,cols ! make an arbitrary matrix a and vector b
 b(j) = 1.0_8
 DO i = 1,rows
 a(i,j) = DBLE (i+j)
 ENDDO
 ENDDO
 CALL MPI_BCAST (b,cols,MPI_DOUBLE_PRECISION,master,MPI_COMM_WORLD,ierr)

 count_rows = 0
 DO i = 1,npe_wrld-1
 DO j = 1,cols
 buffer(j) = a(i,j)
 ENDDO
 CALL MPI_SEND (buffer,cols,MPI_DOUBLE_PRECISION,i,i,MPI_COMM_WORLD,ierr)
 count_rows = count_rows+1
 ENDDO

 DO i = 1,rows
 CALL MPI_RECV (ans,1,MPI_DOUBLE_PRECISION, &
 MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)
 sender = status(MPI_SOURCE)
 row_index = status(MPI_TAG) ! tag value in status is the row index
 c(row_index) = ans
 IF (count_rows < rows) THEN ! more work to be done. send another row
 DO j = 1,cols
 buffer(j) = a(count_rows+1,j)
 ENDDO
 CALL MPI_SEND (buffer,cols,MPI_DOUBLE_PRECISION, &
 sender,count_rows+1,MPI_COMM_WORLD,ierr)
 count_rows = count_rows+1
 ELSE ! tell sender that there is no more work
 CALL MPI_SEND (MPI_BOTTOM,0,MPI_DOUBLE_PRECISION,sender,0,MPI_COMM_WORLD,ierr)
 ENDIF
 ENDDO

Point-to-point communication. Matrix-vector multiplication.
The slave code looks like this:

 CALL MPI_BCAST (b,cols,MPI_DOUBLE_PRECISION,master,MPI_COMM_WORLD,ierr)
 DO
 CALL MPI_RECV (buffer,cols,MPI_DOUBLE_PRECISION,master, &
 MPI_ANY_TAG,MPI_COMM_WORLD,status,ierr)
 IF (status(MPI_TAG)==0) EXIT ! there is no more work
 row_index = status(MPI_TAG) ! tag value status is the row index
 ans = 0.0_8
 DO i = 1,cols
 ans = ans + buffer(i)*b(i)
 ENDDO
 CALL MPI_SEND (ans,1,MPI_DOUBLE_PRECISION, &
 master,row_index,MPI_COMM_WORLD,ierr)
 ENDDO

Point-to-point communication. Matrix-vector multiplication.
Running the code

slower with more processes...

Next time...
1. Non-blocking sends and receives

•• Overlapping communications and computations

2. Topologies

3. MPI datatypes

