MPI Part 1

Using MPL. Gropp, Lusk Skjellum

%k References:

http:/www.mpi-forum.org/docs/mpi-1 1-html/nodel $ 2.htwl
* What is MP1?

1) MPI allows a collection of processes to communicate with
messages.

2) MPl s a library of subroutines called from Fortran, € and C++.

Programs are compiler with ordinary compilers and linked with
the MP!I library.

3) MPlis a specification which is independent from particular
implementations. An MPI program should be portable to any
vendors hardware that supports MPI.

A minimal message-passing model

* The processes execute in parallel and have separate address spaces.

* Comwunication is cooperative. A message requires one process to
execute a send comwmand, and one process to execute a receive
command.

* Information from one processs address space (mewmory) is transfered
to another address space (memory) using a message.

% The two processes involved in the communication must agree upon a
message tag to distinguish a message from other messages.

| am proc2.
1 will receive from procl
using tag=1

1 am procl.
I will send to proc2
using tag=1

Communicators

* Groups of processes are called communicators.

= The default communicator is called MPT_coMM WORLD. This
communicator contains all the processes in the current MPI universe.

« MPI allows for the formation of communicators within the global
communicator.

» Message tags are defined within the context of a communicator.

MPI_COMM WORLD

Rank

* Processes are identified within a communicator by their rank
» Rank is an integer
« Rank defined within the context of a communicator.

« [f a communicator contains n processes, then the ranks are integers
from 0 fo n-1.

MPI_COMM WORLD

rnk_wrld:2
rnk comm 2:0

COMM 2

rnk wrld:3
rnk comm 2:1

comMM 1

rnk wrld:0 rnk_wrld:4
rnk comm 1:0 rnk wrld:1 rnk comm 2:2
rnk_comm_l:l

The “hello world” Program

* lmportant features of the hello_world program
1. Use the mpi module, or include the include file called mpif . h
2. Initialize the MPI environment.
3. Determine how many processes are in the current MPI environment.
4. Petermine rank within the MP1_COMM_WORLD communicator
9. Terminate the MPI environment

PROGRAM hello world

USE mpi

IMPLICIT NONE

INTEGER :: npe wrld, &! number of processes within the world communicator
rnk_wrld, &' rank of process within the world communicator
ierr

CALL MPI INIT (ierr) ! initialize MPI environment

CALL MPI COMM SIZE (MPI_COMM WORLD,npe wrld,ierr) ! determine world size
CALL MPI COMM RANK (MPI_COMM WORLD,rnk wrld,ierr) ! determine rank within world

PRINT " (A19,I3,A4,I4)"," hello from proc = ",rnk wrld," of ", npe wrld
CALL MPI FINALIZE (ierr) ! terminate MPI environment

END PROGRAM hello_world

Running the hello_world Program

PROGRAM hello_world
USE mpi

IMPLICIT NONE

INTEGER :: npe _wrld, &! number of processes within the world communicator
rnk wrld, &! rank of process within the world communicator
ierr
CALL MPI INIT (ierr) ! initialize MPI environment

CALL MPI:COMM_SIZE (MPI_COMM WORLD,npe wrld,ierr) ! determine world size
CALL MPI_COMM RANK (MPI_COMM WORLD,rnk wrld,ierr) ! determine rank within world

PRINT " (A19,I3,A4,I4)"," hello from proc = ",rnk wrld," of ", npe wrld
CALL MPI FINALIZE (ierr) ! terminate MPI environment

END PROGRAM hello world

06 Terminal — csh — csh (ttypl) — 80x14

bliss 39 * mpirun -np 8 hello_wor ld
hello from proc of i}
hella from proc of
hella from proc of
hella from proc of
hello from proc of
hella from proc of
hella from proc of
hella fram proc of

bliss 48 »

{ [| N | | N | O | | I |
= = L N &

o0 o0 o0 0 0 00 OO

The slightly modified “hello world” Program

* lmportant features of the slightly wmodified hello_world program

1. Use the mpi commands MPI_GET PROCESSOR NAME {0 determwine
where a processes is actually running.

2. Use the mpi commands MPI_ WTICK and MPI_WTIME tfo time code
3. Use the wpi commands MPI_ BARRIER write output in order.

PROGRAM hello_world_2
USE mpi
IMPLICIT NONE

INTEGER :: npe_wrld, &! number of processes within the world communicator
rnk wrld, &! rank of process within the world communicator
i,j,n,name len|ierr

REAL (KIND=SELECTED REAL KIND (12)) :: wall tick,time start,time_end, x

CHARACTER (LEN=128) :: proc_name
CALL MPI_INIT (ierr)

CALL MPI_COMM SIZE (MPI_COMM WORLD,npe wrld,ierr)
CALL MPI_COMM RANK (MPI_COMM WORLD,rnk wrld,ierr)

The slightly modified “hello world” Program

* Code (continued) for the slightly modified hello_world program

CALL MPI_GET_ PROCESSOR NAME (proc_name,name len,ierr)

wall tick = MPI WTICK () ! wall clock timer increment in seconds
IF (rnk _wrld == 0) PRINT " (Al3,F12.8)"," wall tick = ",wall tick

! do some useless work
time start = MPI WTIME () ! wall clock timer start
x =0.0_8
DO j = 1,5000
DO i = 1,5000
X = x + SIN (x+FLOAT (rnk_wrld))
ENDDO

ENDDO
time end = MPI WTIME () ! wall clock timer stop

! write the results
DO n = 0,npe _wrld-1
IF (rnk _wrld == n) THEN

PRINT " (A19,I3,A4,1I4,A12,A16,A10,F8.5,A10,F12.8)", &
" hello from proc = ",rnk wrld," of ",npe wrld, &
" running on ",TRIM (proc_name), &
" time = ",time end-time start," answer = ", x
ENDIF
CALL MPI_BARRIER (MPI_COMM_WORLD,ierr)

ENDDO
CALL MPI_FINALIZE (ierr)

END PROGRAM hello_world_2

Collective Communication: Scatter

* Transfer information for one process to many (scatter) or collect
information from many processes fo one (gather)

% MPI BCAST broadcasts a wessage from the process with rank
rooT to all processes of the comwunicator group comm, itself
included. I+ is called by all members of group using the sawme
arquments. On return, the contents of roots send buffer has been
copied to the receive buffer on all processes.

MPI BCAST (buffer,data count,data type,root,comm)

Collective Communication: Gather

% MPI GATHER: Each process (root process included) sends the
contents of its send buffer to the root process. The root process

receives the messages into the receive buffer and stores thew in
rank order.

MPI GATHER (send buffer,send count,6 send type,
recv_buffer,recv _count,recv type,root,comm, ierr)

* MPI_REDUCE: Combines the elements in the send buffer of each
process in the comwmunicator group comm, using the operation op, and

returns the combined value in the receive buffer of the process with
rank root.

MPI REDUCE (send buffer,recv buffer,send count,
send type,op,root,comm,ierr)

where op can be several things including Mp1_Max (MPI MIN) for
maximuwm (minimum), MPI_sum for summation.

An example with Mmp1_BcAsT and MPI_REDUCE
* Find an approximation for T using numerical infegration

/4--\\
3| \

1
2,
J 42d1X:7T
5 1+x

1l; procl | proc2 | proc3 | proc4

0.25 0.5 0.75 1

%* The algorithm for the code:

1. The root process will read the global number of intervals and
broadcast the number to the other processes using Mp1_BcasT.

2. Each process will then deterwine its subinterval using its rank in
the comwmunicator and integrate to find its subarea

3. Using vp1_rEDUCE With the option Mp1_sum the subareas are
summed to find the total area

Code the Pi example

PROGRAM pi
USE mpi
IMPLICIT NONE

INTEGER :: npe wrld,rnk wrld,n,i,ierr

REAL (KIND=SELECTED REAL KIND (12)) :: &
del x,x left,pi piece,pi_approx,time start,time end,x

setup MPI

CALL MPI INIT (ierr)

CALL MPI_COMM SIZE (MPI_COMM WORLD,npe wrld,ierr)

CALL MPI_COMM RANK (MPI_COMM WORLD,rnk wrld,ierr)

read and broadcast total number of intervals

IF (rnk _wrld==0) THEN
PRINT *, 'Enter the total number of intervals '
READ (*,*) n

ENDIF

CALL MPI BCAST (n,1,MPI INTEGER,0,MPI COMM WORLD, ierr)

time start = MPI WTIME () ! wall clock timer start
integrate subinterval
del x = 1.0_8/DBLE (n); x left = DBLE (rnk wrld)/DBLE (npe_ wrld) ;
pi_piece = 0.0_8
DO i = 1,n/npe_wrld
x = x left + del x*(DBLE(i)-0.5_8)
Pi_piece = pi piece + del_x*(4.0_8/(1.0_8 + x**2))
ENDDO
gather the pieces of the pi
CALL MPI REDUCE (pi_piece,pi_ approx,l,MPI DOUBLE PRECISION,MPI SUM,0, &
MPI_COMM WORLD,ierr)
time end = MPI WTIME () ! wall clock timer stop
print the approximate wvalue
IF (rnk_wrld==0) THEN

PRINT " (Al2,F22.20)","pi_approx = ",pi_ approx
ENDIF
CALL MPI_BARRIER (MPI_COMM WORLD,ierr)
PRINT " (Al2,F14.10)","time = ",time_end-time_ start

CALL MPI_FINALIZE (ierr)

END PROGRAM pi

Point-to-point communication
* Here we send messages directly form one process to another.

% MPI_SEND:

s This is a blocking send. Control does not return until the message
data has been safely stored away so that the sender is free to
overwrite the send buffer.

s The syntax of the blocking send operation is given below:

MPI_SEND (BUFFER,DATA COUNT,DATA TYPE,DEST,TAG,
COMM, IERR)

where
DEST i the rank of destination (integer) within comm
TAG i$ the message taq (integer)

Point-to-point communication

% MPI_RECV:

s This is a blocking receive. Control returns only after the receive
buffer contains the newly received message.

= The syntax of the blocking send operation is given below:

MPI_RECV (BUFFER,DATA COUNT,DATA TYPE, SOUR,TAG,COMM,
STATUS, IERR)

where
souR i8 the rank of source (integer) within comm. The source can

also be specified as MPI ANY SOURCE

TAG i$ the message taqg (integer). The tag can also be specified as
MPI_ANY TAG

Point-to-point communication. Matrix-vector multiplication.

*This is a “master-slave” algorithm. One process (the wmaster) is
responsible for the coordinating the work of the others (the slaves).

%* We wish to perform a matrix-vector multiply in parallel.

Ab =c

%* The masters algorithm for the code:

1. The master will broadeast the veetor b to all the slaves.
2. The master will send one row of the matrix A to each slave.

3. The master then waits for the slave to perform the dot product
and return the element of ¢. At this time the master sends that
slave a new row of A. Continve until all rows are processed.

* The slaves algorithwm for the code:
1. The slaves receive vector b from master.
2. Perform dot-products of b and rows of A. Send result to master

Point-to-point communication. Matrix-vector multiplication.
% The code is clearly partitioned into a master part and a slave part

PROGRAM mat vec
USE mpi
IMPLICIT NONE

INTEGER, PARAMETER :: rows=100,cols=100

INTEGER :: npe wrld,rnk wrld,master,i,j,count rows, sender,row_index,ierr
INTEGER :: status(MPI_STATUS SIZE)
REAL (KIND=SELECTED_REAL_KIND (12)) :: &

a(rows,cols) ,b(cols) ,c(rows) ,buffer(cols),h ans,time start,time_end
CALL MPI_INIT (ierr)
CALL MPI_COMM SIZE (MPI_COMM WORLD,npe wrld, ierr)
CALL MPI_COMM RANK (MPI_COMM_WORLD,rnk_wrld,ierr)

master = 0

IF (rnk_wrld==master) THEN ! THE MASTER DOES THIS BLOCK OF CODE

ELSE ! THE SLAVES DO THIS BLOCK OF CODE

ENDIF

CALL MPI_FINALIZE (ierr)

END PROGRAM mat vec

Point-to-point communication. Matrix-vector multiplication.
* The master code looks like this:

DO j = 1,cols ! make an arbitrary matrix a and vector b
b(j) = 1.0_8
DO i = 1,rows
a(i,j) = DBLE (i+j)
ENDDO
ENDDO
CALL MPI BCAST (b,cols,MPI DOUBLE PRECISION, master, MPI COMM WORLD, ierr)

count _rows = 0
DO i = 1,npe wrld-1
DO j = 1,cols
buffer(j) = a(i,j)

ENDDO
CALL MPI_SEND (buffer,cols,MPI DOUBLE PRECISION,i,i,MPI_COMM WORLD,ierr)
count_rows = count_ rows+l

ENDDO

DO i = 1,rows
CALL MPI_RECV (ans,l,MPI_DOUBLE_PRECISION, &
MPI_ANY SOURCE,MPI_ANY TAG,MPI_COMM WORLD,status,ierr)

sender = status (MPI_SOURCE)
row_index = status(MPI_TAG) ! tag value in status is the row index
c(row_index) = ans

IF (count rows < rows) THEN ! more work to be done. send another row
DO j = 1,cols
buffer (j) = a(count_rows+l, j)
ENDDO
CALL MPI_SEND (buffer,cols,MPI_DOUBLE_PRECISION, &
sender,count_rows+1l,MPI COMM WORLD, ierr)
count_rows = count rows+l
ELSE ! tell sender that there is no more work
CALL MPI_SEND (MPI_BOTTOM,0,MPI DOUBLE PRECISION,sender,0,MPI_COMM WORLD, ierr)
ENDIF
ENDDO

Point-to-point communication. Matrix-vector multiplication.
% The slave code looks like this:

CALL MPI BCAST (b,cols,MPI_DOUBLE_PRECISION,master,MPI_COMM_WORLD,ierr)
DO
CALL MPI_RECV (buffer,cols,MPI_DOUBLE_PRECISION,master, &
MPI_ANY TAG,MPI_COMM WORLD,status,ierr)
IF (status(MPI_TAG)==0) EXIT ! there is no more work
row_index = status (MPI_TAG) ! tag value status is the row index
ans = 0.0_8
DO i = 1,cols
ans = ans + buffer (i) *b (i)
ENDDO
CALL MPI_SEND (ans,1,MPI DOUBLE PRECISION, &
master,row_index,MPI COMM WORLD, ierr)
ENDDO

Point-to-point communication. Matrix-vector multiplication.
* Running the code

* slower with more processes...

66 Terminal — csh — csh (ttyp3) — 100x24 — 383)
Fusrd local/bindmpifo8 -c -04 -C=all -1/usrflocal/include mat_vec. f98 5
ifort: Command line warning: ignoring option '-convert'; argument must be seporate {

mat_vec. f98(E6) : (cal. 18) remark: LOOP WAS WECTORIZED.
mat_vec. f98(24) : (col. 9) remark: LOOP WAS YECTORIZED.
Fusrd local/bin/mpif98 -o ./ mat_vec mat_vec.o

eden 1A > mpirun -np 2 mat_wvec

time = B.B9Z252A161 N
time = B.A922913326

eden 11 > mpirun -np 3 mat_wvec

time = H. 2493729591
time = A. 2492809296
time = A, 24935259087
eden 12 > mpirun -np 4+ mat_wvec
time = H.5544278622
time = H.5542R69296
time = H.5543239117
time = A. 5542860031
eden 13 »

2, |

Next time...
1. Non-blocking sends and receives

e (verlapping communications and computations
2. Topologies
3.MPI datatypes

