
Domain decomposition

Here we will demonstrate the method of parallelization called 
domain decomposition. We will partition the physical domain into 
pieces and assign each piece to a process. Each process will 
communicate with it neighboring domain using message passing.

We will numerically solve the Poisson equation.

The continuous form of the problem:

         on the interior of the unit square 

         on the boundary

This simple PDE can be used as a template for more complicated 
problems. The communication patterns here are the same as more 
complex problems.

0,1[ ]× 0,1[ ]
α x, y( ) = γ x, y( )
∇2α = β x, y( )



Discrete Poisson problem: The grid

The solution is approximated at discrete points.  These points called a 
grid.

The positions of the grid points                  are given by:

The notation            refers to approximation of        at

The distance between grid points is given by 

 
xi =

i
n +1

,i = 0,K,n +1
 
yj =

j
n +1

, j = 0,K,n +1

α i, j xi , yj( )α

h = 1
n +1

xi , yj( )



Discrete Poisson problem: The discrete equation

The continous equation

The discrete equation

Solve for          gives the Jacobi iteration
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Discrete Poisson problem: Domain decomposition

For the case when n = 8, the 10 X10 grid looks like this:

•• Solid green is a interior grid points

•• open circle is a boundary point

Suppose we divide the grid to 
four processes. 

i,j+1

i,j-1

i-1,j i+1,ji,j

proc0 proc1

proc2 proc3

proc0

sent from proc 2

sent from
 proc 1

Then, for  example, proc0 is 
assigned an array 6X6 like 
this:



Discrete Poisson problem: Algorithm
The algorithm for the Jacobi iteration is given by:

1.  Communicate information to fill ghost cells

a.  Initiate nonblocking sends

b.  Initiate nonblocking receives

c.  Wait for message to be completed

2.  Perform one sweep of the Jacobi iteration

3.  GOTO 1.



Nonblocking Send
A nonblocking send call initiates the send operation, but does not 
complete it.  The nonblocking send call will return before the message 
was copied out of the send buffer. 

A separate send complete call is needed to complete the 
communication, i.e., to verify that the data has been copied out of 
the send buffer. 

With suitable hardware, the transfer of data out of the sender 
memory may proceed concurrently with computations done by the 
sender after the send was initiated and before it completed.

MPI_ISEND had the following syntax: 

MPI_ISEND (BUFFER,DATA_COUNT,DATA_TYPE,

DEST,TAG,COMM,REQUEST)

where the REQUEST argument determines if the operation has 
completed.



Nonblocking Receive
A nonblocking receive call initiates the receive operation, but does 
not complete it. The call will return before a message is stored into 
the receive buffer. 

A separate receive complete call is needed to complete the receive 
operation and verify that the data has been received into the receive 
buffer. 

With suitable hardware, the transfer of data into the receiver 
memory may proceed concurrently with computations done after 
the receive was initiated and before it completed.

MPI_IRECV had the following syntax: 

MPI_IRECV (BUFFER,DATA_COUNT,DATA_TYPE,

SOUR,TAG,COMM,REQUEST)

where the REQUEST argument determines if the operation has 
completed.



Completion of Nonblocking Send and Receive
The call MPI_WAITALL blocks until all communication operations 
associated with active handles in the list are completed, and returns 
the status of all these operations.

MPI_WAITALL had the following syntax: 

MPI_WAITALL(COUNT,ARRAY_OF_REQUESTS, 
ARRAY_OF_STATUSES,IERR)

where the REQUEST argument determines if the operation has 
completed.



Where am I?  Who are my neighbors?
It is useful to make a process map.  This can be used to determine 
position of the local process relative to other processes

INTEGER,PARAMETER :: &
   n = 256, &! global number of grid points along an edge
   iblk_max = 4, &! number domain decomposition blocks in the i-direction
   jblk_max = 4, &! number domain decomposition blocks in the j-direction
   i_max = n/iblk_max, &! local number of grid-points in the  i-direction
   j_max = n/jblk_max   ! local number of grid-points in the  j-direction

INTEGER :: i,j,ib,jb,proc,iblk,jblk,nghbr_count,req,edge,iter
INTEGER :: proc_map(0:iblk_max+1,0:jblk_max+1),nghbr_list(4)

! set proc_map
   proc_map(:,:) = -1
   proc = 0
   DO jb = 1,jblk_max
      DO ib = 1,iblk_max
         proc_map(ib,jb) = proc; proc = proc + 1;
      ENDDO
   ENDDO

! determine position of the local process on the proc_map
   iblk = 1 +           MOD (rnk_wrld,iblk_max)
   jblk = 1 + (rnk_wrld-MOD (rnk_wrld,iblk_max))/iblk_max

! count the number of neighboring blocks
   nghbr_list(:) = (/ proc_map(iblk+1,jblk),proc_map(iblk,jblk+1), &
                      proc_map(iblk-1,jblk),proc_map(iblk,jblk-1) /)

   nghbr_count = COUNT (nghbr_list(:) /= -1)

 O



Initiate sends with MPI_ISEND
Check each edge for a neighbor, load buffers and post sends

   TYPE buf_node
      REAL (KIND=SELECTED_REAL_KIND (12)),POINTER :: send(:),recv(:)
   END TYPE buf_node
   TYPE (buf_node) :: buf(4)

  

! allocate memory for send and recv buffers
   ALLOCATE (buf(1)%send(j_max),buf(1)%recv(j_max)) ! east
   ALLOCATE (buf(2)%send(i_max),buf(2)%recv(i_max)) ! north
   ALLOCATE (buf(3)%send(j_max),buf(3)%recv(j_max)) ! west
   ALLOCATE (buf(4)%send(i_max),buf(4)%recv(i_max)) ! south
   ALLOCATE (send_req(nghbr_count))

  

! post sends
   req = 0; send_req(:) = -999
   DO edge = 1,4
      IF (nghbr_list(edge) /= -1) THEN
         IF (edge == 1) buf(edge)%send(:) = alph(i_max,1:j_max) ! east
         IF (edge == 2) buf(edge)%send(:) = alph(1:i_max,j_max) ! north
         IF (edge == 3) buf(edge)%send(:) = alph(1,1:j_max)     ! west
         IF (edge == 4) buf(edge)%send(:) = alph(1:i_max,1)     ! south

         msg_tag = (npe_wrld+1)*rnk_wrld + nghbr_list(edge) + 1
         req = req + 1

         CALL MPI_ISEND (buf(edge)%send,SIZE (buf(edge)%send(:)), &
                            MPI_DOUBLE_PRECISION,nghbr_list(edge),msg_tag, &
                            MPI_COMM_WORLD,send_req(req),ierr)
      ENDIF
   ENDDO

 O

 O



Initiate receives with MPI_IRECV
Check each edge for a neighbor, clear buffers and post receives

! post receives
   req = 0; recv_req(:) = -999
   DO edge = 1,4
      IF (nghbr_list(edge) /= -1) THEN
         buf(edge)%recv(:) = 0.0

         msg_tag = (npe_wrld+1)*nghbr_list(edge) + rnk_wrld + 1
         req = req + 1

         CALL MPI_IRECV (buf(edge)%recv,SIZE (buf(edge)%recv(:)), &
                            MPI_DOUBLE_PRECISION,nghbr_list(edge),msg_tag, &
                            MPI_COMM_WORLD,recv_req(req),ierr)
      ENDIF
   ENDDO



Wait for messages to be completed with MPI_WAITALL
Check each edge for a neighbor, clear buffers and post receives

! allocate send_req, recv_req, send_status, recv_status
   ALLOCATE (send_req(nghbr_count))
   ALLOCATE (recv_req(nghbr_count))
   ALLOCATE (send_status(MPI_STATUS_SIZE,nghbr_count))
   ALLOCATE (recv_status(MPI_STATUS_SIZE,nghbr_count))

  

!  wait for messages to complete
   send_status(:,:) = -999; recv_status(:,:) = -999; 
   CALL MPI_WAITALL (nghbr_count,send_req,send_status,ierr) 
   CALL MPI_WAITALL (nghbr_count,recv_req,recv_status,ierr)

 O



Discrete Poisson problem: Set-up

Consider 

α x, y( ) = sin 4x2 + 5y2( )

β x, y( ) = 18cos 4x2 + 5y2( )− 64x2 sin 4x2 + 5y2( )−100y2 sin 4x2 + 5y2( )
then 
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Discrete Poisson problem: Results

The results look like this: 
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Next time...
1. Non-blocking sends and receives 

•• Overlapping communications and computations

2. Topologies

3. MPI  datatypes


