
Domain decomposition

Here we will demonstrate the method of parallelization called
domain decomposition. We will partition the physical domain into
pieces and assign each piece to a process. Each process will
communicate with it neighboring domain using message passing.

We will numerically solve the Poisson equation.

The continuous form of the problem:

 on the interior of the unit square

 on the boundary

This simple PDE can be used as a template for more complicated
problems. The communication patterns here are the same as more
complex problems.

0,1[]× 0,1[]
α x, y() = γ x, y()
∇2α = β x, y()

Discrete Poisson problem: The grid

The solution is approximated at discrete points. These points called a
grid.

The positions of the grid points are given by:

The notation refers to approximation of at

The distance between grid points is given by

xi =

i
n +1

,i = 0,K,n +1

yj =

j
n +1

, j = 0,K,n +1

α i, j xi , yj()α

h = 1
n +1

xi , yj()

Discrete Poisson problem: The discrete equation

The continous equation

The discrete equation

Solve for gives the Jacobi iteration

α i−1, j − 2α i, j +α i+1, j

h2
+
α i, j−1 − 2α i, j +α i, j+1

h2
= βi, j

α i, j
(k+1) =

1
4
α i−1, j
(k) +α i+1, j

(k) +α i, j−1
(k) +α i, j+1

(k) − h2βi, j
(k)()

∂2α
∂x2

+
∂2α
∂y2

= β

Discrete Poisson problem: Domain decomposition

For the case when n = 8, the 10 X10 grid looks like this:

•• Solid green is a interior grid points

•• open circle is a boundary point

Suppose we divide the grid to
four processes.

i,j+1

i,j-1

i-1,j i+1,ji,j

proc0 proc1

proc2 proc3

proc0

sent from proc 2

sent from
 proc 1

Then, for example, proc0 is
assigned an array 6X6 like
this:

Discrete Poisson problem: Algorithm
The algorithm for the Jacobi iteration is given by:

1. Communicate information to fill ghost cells

a. Initiate nonblocking sends

b. Initiate nonblocking receives

c. Wait for message to be completed

2. Perform one sweep of the Jacobi iteration

3. GOTO 1.

Nonblocking Send
A nonblocking send call initiates the send operation, but does not
complete it. The nonblocking send call will return before the message
was copied out of the send buffer.

A separate send complete call is needed to complete the
communication, i.e., to verify that the data has been copied out of
the send buffer.

With suitable hardware, the transfer of data out of the sender
memory may proceed concurrently with computations done by the
sender after the send was initiated and before it completed.

MPI_ISEND had the following syntax:

MPI_ISEND (BUFFER,DATA_COUNT,DATA_TYPE,

DEST,TAG,COMM,REQUEST)

where the REQUEST argument determines if the operation has
completed.

Nonblocking Receive
A nonblocking receive call initiates the receive operation, but does
not complete it. The call will return before a message is stored into
the receive buffer.

A separate receive complete call is needed to complete the receive
operation and verify that the data has been received into the receive
buffer.

With suitable hardware, the transfer of data into the receiver
memory may proceed concurrently with computations done after
the receive was initiated and before it completed.

MPI_IRECV had the following syntax:

MPI_IRECV (BUFFER,DATA_COUNT,DATA_TYPE,

SOUR,TAG,COMM,REQUEST)

where the REQUEST argument determines if the operation has
completed.

Completion of Nonblocking Send and Receive
The call MPI_WAITALL blocks until all communication operations
associated with active handles in the list are completed, and returns
the status of all these operations.

MPI_WAITALL had the following syntax:

MPI_WAITALL(COUNT,ARRAY_OF_REQUESTS,
ARRAY_OF_STATUSES,IERR)

where the REQUEST argument determines if the operation has
completed.

Where am I? Who are my neighbors?
It is useful to make a process map. This can be used to determine
position of the local process relative to other processes

INTEGER,PARAMETER :: &
 n = 256, &! global number of grid points along an edge
 iblk_max = 4, &! number domain decomposition blocks in the i-direction
 jblk_max = 4, &! number domain decomposition blocks in the j-direction
 i_max = n/iblk_max, &! local number of grid-points in the i-direction
 j_max = n/jblk_max ! local number of grid-points in the j-direction

INTEGER :: i,j,ib,jb,proc,iblk,jblk,nghbr_count,req,edge,iter
INTEGER :: proc_map(0:iblk_max+1,0:jblk_max+1),nghbr_list(4)

! set proc_map
 proc_map(:,:) = -1
 proc = 0
 DO jb = 1,jblk_max
 DO ib = 1,iblk_max
 proc_map(ib,jb) = proc; proc = proc + 1;
 ENDDO
 ENDDO

! determine position of the local process on the proc_map
 iblk = 1 + MOD (rnk_wrld,iblk_max)
 jblk = 1 + (rnk_wrld-MOD (rnk_wrld,iblk_max))/iblk_max

! count the number of neighboring blocks
 nghbr_list(:) = (/ proc_map(iblk+1,jblk),proc_map(iblk,jblk+1), &
 proc_map(iblk-1,jblk),proc_map(iblk,jblk-1) /)

 nghbr_count = COUNT (nghbr_list(:) /= -1)

 O

Initiate sends with MPI_ISEND
Check each edge for a neighbor, load buffers and post sends

 TYPE buf_node
 REAL (KIND=SELECTED_REAL_KIND (12)),POINTER :: send(:),recv(:)
 END TYPE buf_node
 TYPE (buf_node) :: buf(4)

! allocate memory for send and recv buffers
 ALLOCATE (buf(1)%send(j_max),buf(1)%recv(j_max)) ! east
 ALLOCATE (buf(2)%send(i_max),buf(2)%recv(i_max)) ! north
 ALLOCATE (buf(3)%send(j_max),buf(3)%recv(j_max)) ! west
 ALLOCATE (buf(4)%send(i_max),buf(4)%recv(i_max)) ! south
 ALLOCATE (send_req(nghbr_count))

! post sends
 req = 0; send_req(:) = -999
 DO edge = 1,4
 IF (nghbr_list(edge) /= -1) THEN
 IF (edge == 1) buf(edge)%send(:) = alph(i_max,1:j_max) ! east
 IF (edge == 2) buf(edge)%send(:) = alph(1:i_max,j_max) ! north
 IF (edge == 3) buf(edge)%send(:) = alph(1,1:j_max) ! west
 IF (edge == 4) buf(edge)%send(:) = alph(1:i_max,1) ! south

 msg_tag = (npe_wrld+1)*rnk_wrld + nghbr_list(edge) + 1
 req = req + 1

 CALL MPI_ISEND (buf(edge)%send,SIZE (buf(edge)%send(:)), &
 MPI_DOUBLE_PRECISION,nghbr_list(edge),msg_tag, &
 MPI_COMM_WORLD,send_req(req),ierr)
 ENDIF
 ENDDO

 O

 O

Initiate receives with MPI_IRECV
Check each edge for a neighbor, clear buffers and post receives

! post receives
 req = 0; recv_req(:) = -999
 DO edge = 1,4
 IF (nghbr_list(edge) /= -1) THEN
 buf(edge)%recv(:) = 0.0

 msg_tag = (npe_wrld+1)*nghbr_list(edge) + rnk_wrld + 1
 req = req + 1

 CALL MPI_IRECV (buf(edge)%recv,SIZE (buf(edge)%recv(:)), &
 MPI_DOUBLE_PRECISION,nghbr_list(edge),msg_tag, &
 MPI_COMM_WORLD,recv_req(req),ierr)
 ENDIF
 ENDDO

Wait for messages to be completed with MPI_WAITALL
Check each edge for a neighbor, clear buffers and post receives

! allocate send_req, recv_req, send_status, recv_status
 ALLOCATE (send_req(nghbr_count))
 ALLOCATE (recv_req(nghbr_count))
 ALLOCATE (send_status(MPI_STATUS_SIZE,nghbr_count))
 ALLOCATE (recv_status(MPI_STATUS_SIZE,nghbr_count))

! wait for messages to complete
 send_status(:,:) = -999; recv_status(:,:) = -999;
 CALL MPI_WAITALL (nghbr_count,send_req,send_status,ierr)
 CALL MPI_WAITALL (nghbr_count,recv_req,recv_status,ierr)

 O

Discrete Poisson problem: Set-up

Consider

α x, y() = sin 4x2 + 5y2()

β x, y() = 18cos 4x2 + 5y2()− 64x2 sin 4x2 + 5y2()−100y2 sin 4x2 + 5y2()
then

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1
-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1-100

0

100

0

0.2

0.4

0.6

0.8

Discrete Poisson problem: Results

The results look like this:

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1
-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1
0

0.0025

0.005

0.0075

0

0.25

0.5

0.75

Next time...
1. Non-blocking sends and receives

•• Overlapping communications and computations

2. Topologies

3. MPI datatypes

