Pomain decomposition

* Here we will demonstrate the wethod of parallelization called
domain decomposition. We will partition the physical domain into
pieces and assign each piece to a process. Each process will
communicate with it neighboring domain using message passing.

* We will numerically solve the Poisson equation.

* The continvous form of the problem:
V’a = B(x,y) ontheinterior of the unit square [O, 1] X [(), 1]

o (x,y)=7(x,y) ontheboundary

* This simple PPE can be used as a tewmplate for wmore complicated
problems. The communication patterns here are the same as wore

complex problews.

Discrete Poisson problem: The grid

* The solution is approximated at discrete points. These points called a
grid.

* The positions of the grid points (xl. 380) are given by:

; j

X = A=0,....n+1 y; = J ,j=0,....,n+1
n+l1 n+l1

* The notation o i refers to approximation of ¢ at (xi,yj)

* The distance between grid points is given by

1
n+1

h =

Discrete Poisson problem: The discrete equation

* The continous equation

d’a '« T

i b
x> 9y’
* The discrete equation
a_, j—2(x +a, . A HECL +a;
h2 + h2 T i,j
* Solve for gives the Jacobi iteration
o+ l (3 ARENE R e CIIRR A CIRRR AR =Rt J1E Ry /3<k>
Ay NN i-1,j i+1,j I AEum e

l,] 4

Discrete Poisson problem: Domain decomposition
* For the case whenn =8, the 10 X 10 grid looks like this:

*s Solid green is a interior grid points
* open cirele is a boundary point

* Suppose we divide the grid fo

four processes.

* Then, for exawmple, proco is
assigned an array 6X6 like

this:

sent from proc 2

(o

o o o]

(0 o o o o] o

O 6 00 o0 o

e o
e o
procO
e o
e o

O O

S
O

o © o ©

o (e e ® &0

| 904d wouj JuUas

~

~\

r

J

0O o 0O 0O Oo|j]|]o 0o o o o
O 6 6 06 o0|]|e6 o6 o6 o o
O 6 6 06 0|6 o6 o6 o o
proc2 proc3
O 6 6 06 o0|/|6 o6 o6 o o
O 6 6 0 9o0|]|6 6 o6 o o
L Zf_] k11 J
(0 @ o o—¢{eo o o o O]
-1, Ly | i+1y
O 6 06 o0 o0 1. @ 06 o6 O
Lj-
O 6 6 06 0|6 06 06 o o
procO procl
O 6 6 06 o0|/|6 o0 o0 o o
O 0O 0O 0O O0oj]|]o 0O 0O o o
L J| \o

.

Discrete Poisson problem: Algorithm
2Kk The algorithwm for the Jacobi iteration is given by:

1. Communicate information to fill ghost cells
a. lnitiate nonblocking sends
b. Initiate nonblocking receives
¢. Wait for message o be completed
2. Perform one sweep of the Jacobi iteration
3. ¢OTO 1.

Nonblocking Send

* A nonblocking send call initiates the send operation, but does not
complete it. The nonblocking send call will return before the message
was copied out of the send buffer.

* A separate send cowmplete call is wneeded to cowmplete the
communication, i.e., to verify that the data has been copied out of
the send buffer.

* With svitable hardware, the transfer of data out of the sender
mewmory wmay proceed concurrently with computations done by the
sender after the send was initiated and before it completed.

% MPI_ISEND had the following syntax:
MPI ISEND (BUFFER,DATA COUNT,DATA TYPE,
DEST, TAG, COMM, REQUEST)

where the REQUEST argument deterwmines if the operation has
completed.

Nonblocking Receive

* A nonblocking receive call initiates the receive operation, but does
not complete it. The call will return before a message is stored into
the receive buffer.

% A separatfe receive complete call is needed to complete the receive
operation and verify that the data has been received into the receive
buffer.

* With suitable hardware, the transfer of data into the receiver

memory wmay proceed concurrently with computations done after
the receive was initiated and before it completed.

* MPI_IRECV had the following syntax:
MPI IRECV (BUFFER,DATA COUNT,DATA TYPE,
SOUR, TAG, COMM, REQUEST)

where the REQUEST argument deterwmines if the operation has
completed.

Completion of Nonblocking Send and Receive

% The call Mpr_warTALL blocks until all communication operations
associated with active handles in the list are completed, and returns
the status of all these operations.

* MPI_WAITALL had the following syntax:

MPI WAITALL (COUNT,ARRAY OF REQUESTS,
~ ARRAY OF STATUSES, IERR)

where the REQUEST argument deterwmines if the operation has
completed.

Where am 17 Who are my neighbors?

* It is useful to make a process map. This can be used to deterwmine
position of the local process relative to other processes

INTEGER, PARAMETER :: &
n = 256, &! global number of grid points along an edge
iblk max = 4, &! number domain decomposition blocks in the i-direction
jblk max = 4, &! number domain decomposition blocks in the j-direction
i max = n/iblk max, &! local number of grid-points in the i-direction
j_max = n/jblk max ! local number of grid-points in the j-direction

INTEGER :: i,j,ib,]jb,proc,iblk, jblk,nghbr count, req,edge,iter
INTEGER :: proc_map(0:iblk max+1l,0:jblk max+1l) ,nghbr list(4)

! set proc _map
proc map(:,:) = -1
proc = 0
DO jb = 1,jblk max
DO ib = 1,iblk max
proc_map (ib,jb) = proc; proc = proc + 1;
ENDDO
ENDDO

! determine position of the local process on the proc map
iblk = 1 + MOD (rnk_wrld,iblk max)
jblk = 1 + (rnk_wrld-MOD (rnk_wrld,iblk_max))/iblk_max

! count the number of neighboring blocks
nghbr list(:) = (/ proc_map (iblk+1,jblk) ,proc_map (iblk, jblk+1l), &
proc_map (iblk-1,jblk) ,proc_map (iblk, jblk-1) /)

nghbr count = COUNT (nghbr list(:) /= -1)

Initiate sends with MP1_ISEND

* Check each edge for a neighbor, load buffers and post sends

TYPE buf node

REAL (KIND=SELECTED REAL KIND (12)),POINTER :: send(:),recv(:)
END TYPE buf node
TYPE (buf node) :: buf (4)

! allocate memory for send and recv buffers

ALLOCATE (buf (1) %send(j_max) buf(l)%recv(j_max)) ! east
ALLOCATE (buf (2) %$send(i_max) ,buf(2)%recv(i_max)) ! north
ALLOCATE (buf (3) %send(j_max) ,buf(3)%recv(j_max)) ! west
ALLOCATE (buf (4) %send(i_max) ,buf(4)%recv(i_max)) ! south

ALLOCATE (send req(nghbr count))

! post sends
req = 0; send req(:) = -999
DO edge = 1,4
IF (nghbr list(edge) /= -1) THEN

IF (edge == 1) buf (edge)%send(:) = alph(i_max,1l:j max) ! east
IF (edge == 2) buf (edge)%send(:) = alph(l:i max,j max) ! north
IF (edge == 3) buf (edge)%send(:) = alph(1l,1:]_ max) ! west
IF (edge == 4) buf (edge)%send(:) = alph(l:i_max,1) ! south

msg_tag = (npe_wrld+l) *rnk wrld + nghbr list(edge) + 1
req = req + 1

CALL MPI_ISEND (buf (edge)%send,SIZE (buf (edge)%send(:)), &
MPI DOUBLE PRECISION,nghbr list(edge) msg_tag, &
MPI_ COMM WORLD, send req(req) , ierr)
ENDIF
ENDDO

Initiate receives with MP1_IRECV

* Check each edge for a neighbor, clear buffers and post receives

! post receives
req = 0; recv_req(:) = -999
DO edge = 1,4
IF (nghbr list(edge) /= -1) THEN
buf (edge) $recv(:) = 0.0

msg_tag = (npe_wrld+l) *nghbr list(edge) + rnk wrld + 1
req = req + 1

CALL MPI IRECV (buf (edge)%recv,SIZE (buf (edge)%recv(:)), &
MPI DOUBLE PRECISION,nghbr list(edge) ,msg_tag, &

MPI COMM WORLD,recv_req(req) ,ierr)
ENDIF

ENDDO

Wait for messages to be completed with MPI_WAITALL

* Check each edge for a neighbor, clear buffers and post receives

! allocate send req, recv _req, send status, recv_status
ALLOCATE (send req(nghbr count))
ALLOCATE (recv_req(nghbr count))
ALLOCATE (send_status (MPI_STATUS_SIZE,nghbr count))
ALLOCATE (recv_status (MPI_STATUS_ SIZE,nghbr count))

! wait for messages to complete
send_status(:,:) = -999; recv_status(:,:) = -999;
CALL MPI_WAITALL (nghbr count,send req,send status,ierr)
CALL MPI_WAITALL (nghbr count,recv_req,recv_status,ierr)

Discrete Poisson problem: Sef-up

* Consider
alx,y)=sin4x* +5y°
then

B(x,y)=18cos|4x” + 5y) - 64x’sin(4x” + 5y)-100y” sin(4x* + 5y°

X
Shouaaae
e N
Snahaan

SRSSEEEEE
S SSSeaaeaiesaaana
ety
e ae e
S
3

\

MNN
ARt

MMM

MR N\

W\
\%\\\\\\\\\\\\\\\\\\\‘\\\\“\\\I\‘f\
N

Discrete Poisson problem: Results

% The results look like this:

Next time...
1. Non-blocking sends and receives

e (verlapping communications and computations
2. Topologies
3.MPI datatypes

