
Mixed Type Numeric Expressions

In the CPU calculations must be performed between
objects of the same type, so if an expression mixes type
some objects must change type.
Default types have an implied ordering:

1. INTEGER -- lowest

2. REAL

3. DOUBLE PRECISION

4. COMPLEX -- highest

The result of an expression is always of the highest
type. For example:

INTEGER * REAL gives a REAL (3 * 2.0 = 6.0)

REAL * INTEGER gives a REAL (3.0 * 2 = 6.0)

DOUBLE PRECISION * REAL gives DOUBLE PRECISION

COMPLEX * <any type> gives COMPLEX

DOUBLE PRECISION * REAL * INTEGER gives DOUBLE
PRECISION

The actual operator is unimportant.

Mixed Type Assignment

Problems often occur with mixed-type arithmetic. The
rules for type conversion are given below.

• INTEGER = REAL

the RHS is evaluated, truncated (all of the
decimal places lopped off) and assigned to the
LHS.

• REAL = INTEGER

the RHS is promoted to be REAL and stored
(approximately) in the LHS.

Example: program mixedassign.f90

Intrinsic Procedures

Fortran 90 has over 100 built-in or intrinsic
procedures to perform common tasks efficiently. They
below to a number of classes:

Elemental

• Mathematical (SQRT, SIN, LOG, etc.)

• Numeric (ABS, CEILING, SUM, etc.)

• Character (INDEX, SCAN, TRIM, etc.)

• Bit (IAND, IOR, ISHFT, etc.)

Inquiry (ALLOCATED, SIZE, etc.)
Transformational (REAL, TRANSPOSE, etc.)
Miscellaneous or non-elemental subroutines
(SYSTEM_CLOCK and DATE_AND_TIME)

Introduction to Formatting

Fortran 90 has extremely powerful, flexible and easy-
to-use capabilities for output formatting.

The default formatting may be sufficient on your
computer for now, but sometimes roundoff error
causes “ugly” looking real values.

It’s not a malfunction of the computer’s
hardware, but a fact of life of finite precision
arithmetic on computers.
Replace the asterisk denoting the default
format with a custom format specification.
Example: add_2_reals.f90

Edit Descriptors

The three most frequently used edit descriptors are:
f (floating point) for printing of reals

syntax: fw.d
w = total number of positions
d = number of places after the decimal point

• the decimal point occupies a position, as does a
minus sign

a (alphanumeric) for character strings
i (integer) for integer (can use iw.d format, where
the d will pad in front of the value with zeroes

Also the new line (/) and tab (t) edit descriptors.
Example: format_examples.f90

Subroutines and
Functions

Procedures: Subroutines and Functions

There are two types of procedures:
SUBROUTINE: a parameterized named sequence of
code which performs a specific task and can be
invoked from other program units.

• invoked with the CALL statement
FUNCTION: same as a subroutine but returns a
result in the function name.

• invoked by placing the function name (and its
associated arguments in an expression)

• use when just one return value is needed.
Example: sort3.f90 and sort_3.f90

Notes

This simple example illustrates one of the
important uses of subroutines: To exhibit the
overall structure of a program and put the details
in another place.
Internal subroutines and functions are designated
by the contains statement.
The implicit none in the host program applies to
the internal subroutines. Also used in modules.
Can we go even further with this example?

Subroutines with Arguments

We can pass values to a subroutine by placing them
in parentheses after the name of the subroutine in
the call statement.
In the call to swap, n1 and n2 are called arguments.
Although it may appear to be handy, internal
procedures may not be nested.
To make subroutine swap available to other program
units, we would need to place it within a module.

Functions

Just like a subroutine, but intended to return one
value (or an array of values). Invoked just like an
intrinsic function.

The result of a function should be placed in a result
variable using the result keyword at the end of the
function statement.

If the result keyword and variable are omitted, the
function name is used as the return variable and
must be declared in the function)

Example: series.f90

Argument Association

The variables a and b in subroutine swap are place
holders for the two numbers to be swapped. These
are dummy arguments and must be declared in the
subroutine. The variables n1 and n2 in the first call
to swap are the actual arguments.
If the value of a dummy argument changes, then so
does the value of the actual argument (pass-by-
reference).
An actual argument that is a constant or an
expression more complicated than a variable can
only pass a value to the corresponding dummy
argument. This is called pass-by-value.

It is bad programming practice to modify
arguments in function calls.

In general, the number of actual and dummy
arguments must be the same.

Also, the data type (and kind parameter) of each
actual argument must match that of the
corresponding dummy argument.

Keyword arguments and optional arguments: best
explained by an example (series2.f90)

