
Argument Intent

It’s good programming practice to indicate whether
a dummy argument will be:

• Only be referenced -- INTENT(IN)

• Be assigned to before use -- INTENT(OUT)

• Be referenced and assigned to -- INTENT(INOUT)
The use of INTENT attributes is recommended as it:

• Allows good compilers to check for coding errors.

• Facilitates efficient compilation and optimization.
Example: series3.f90

Scope
The scope of a name is the set of lines in a Fortran
program where that name may be used and refer to
the same variable, procedure or type.
In general, the scope extends throughout the
program unit where the entity is declared (host
association).

• Known to any procedures declared within.

• Example: calculatepay.f90
But NOT if the same entity is redeclared in an
internal procedure. (myscope.f90)
Module scope is a little different -- we’ll cover that
later (use association).

The Save Attribute

Fortran 77 compilers generally used static storage
for all variables. Most Fortran 90 systems use
static storage only when required. This means that
local variables in subroutines and functions will
NOT be preserved after control returns unless:

• The variable is initialized.

• The SAVE attribute is used. real, save :: p, q

There’s also a SAVE statement but the use of the
attribute in declarations is the preferred usage.

The Return Statement

RETURN causes execution of a procedure to
terminate with control given back to the calling
program.
Can be useful in more elaborate procedures as an
alternative to a complicated set of nested if
constructs.

Arrays

Introduction to Arrays

More often than not, you will be working with more
than just individual data values. Instead, you will have
an entire list or set of data that is all the same type.
And you definitely don’t want to work with them this
way:

real :: rh_1, rh_2, rh_3, rh_4, rh_5, ...
 ...
rh_1 = 88.2; rh_2 = 74.8; rh_3 = 55.4; ...

In Fortran, a collection of values of the same type is
called an array. This allows us to do this instead:

real, dimension(1000) :: rh
...
print*, rh(1)
print*, rh(51)

The numbers in parenthesis that specify the
location of an item within an array are called
subscripts (borrowed from mathematics). It’s
customary to refer to the expression x(3) as “x sub
3”.

We can use variables as subscripts, too!

i = 1
print*, rh(i)

So you might imagine writing a subroutine that
would print out all of our rh records. Let’s take a
look! rhvals.f90

Array Terminology and Declarations

The preferred method of declaring arrays is to use the
dimension attribute in a type statement:

real, dimension(15) :: x
real, dimension(1:5,1:3) :: y, z

The above are explicit-shape arrays.

Some terminology:

Rank = number of dimensions
The rank of X is 1; rank of Y and Z is 2.

Bounds = upper and lower limits of indices
The bounds of X are 1 and 15; bounds of Y and Z are 1 and 5 and 1 and 3.

Extent = number of elements in dimension
The extent of X is 15; extents of Y and Z are 5 and 3.

Size = total number of elements
Size of X, Y and Z is 15.

Shape = rank and extents
Shape of X is 15; shape of Y and Z is 5,3.

Conformable = same shape
Y and Z are conformable.

More on Declarations
Literals and constants can be used in array
declarations.

The default lower bound is 1.

Bounds can begin and end anywhere (i.e., you can use
zero as a subscript as well as negative subscripts).

Examples:
real, dimension(1:100) :: r is the same as real, dimension(100) :: r
real, dimension(1:10, 1:10) :: s
real :: t(10,10)
real, dimension(-10:-1) :: u
real, dimension(2,5,-1:8) :: x ! this has a rank of 3, extents of 2, 5 and 10,
 ! a shape of (/ 2, 5, 10 /), and a size of 100

integer, parameter :: lda = 5
real, dimension(0:lda-1) :: y
real, dimension(lda,lda+1,lda+2) :: big_array

Declarations using colons for the subscripts may be
used for a dummy argument of a procedure. This
indicates that the shape of the dummy array is to be
taken from the actual argument used when the
procedure is called. This is known as an assumed-
shape array.

Example: rhvals2.f90

The declaration of arrays may also use values of
other dummy arguments to establish extents. These
are called automatic arrays.

Example:
subroutine s2 (dummy_list, n, dummy_array)

real, dimension(:) :: dummy_list
real, dimension(size(dummy_list)) :: local_list
real, dimension(n,n) :: dummy_array, local_array
real, dimension(2*n + 1) :: longer_local_list

Array Syntax
We can reference:

whole arrays
a = 0.0 ! set all elements of the array a to zero
b = c + d ! adds the elements of c and d together, assign result to b

individual elements
a(1) = 0.0 ! set just one element of the array to zero
b(0,0) = a(3) + c(5,1)

array sections
a(2:4) = 0.0 ! set a(2), a(3) and a(4) to zero
b(-1:0,1:2) = c(1:2,2:3) + 1.0 ! adds one to the subsection of c

Array-valued Expressions and Assignment

Arrays are now first-class objects, and array-valued
expressions are evaluated element-wise, which saves
writing many simple loops:

real, dimension(512,1024) :: raw, background, exposure, result, std_err
...
result = (raw - background) / exposure

Similarly, all appropriate intrinsic functions operate
element by element if given an array as an argument:

std_err = SQRT(raw) / exposure

Note that the arrays must be conformable for these
operations to be valid.

background = 0.1 * exposure + 0.125 ! can include scalar constants and
 variables

Array Sections
We can select a portion of an array to use in a
particular computation with subscript-triplets. The
general form is
 [<bound1>] : [<bound2>] [:<stride>]

Examples:
x(:) ! the whole array
x(3:9) or x(3:9:1) ! x(3) to x(9) in steps of 1
x(m:n) or x(m:n:k) ! use integer variables as bounds and stride
x(8:3:-1) ! x(8) to x(3) in steps of -1
x(m:) ! from x(m) to default upper bound
x(:n) ! from default lower bound to x(n)
x(::2) ! from lower bound to upper bound in steps of 2
x(m:m) ! one element section

Slice assignment: can involve overlapping slices
a(2:10) = a(1:9) ! shift up one element
b(1:9) = b(3:11) ! shift down two elements

Vector subscripts may also be used:
integer, dimension(4) :: mysub = (/ 32, 16, 17, 18 /)
real, dimension(100) :: vector
...
write(*,*) vector(mysub)

Note that vector subscripts can only be used on the
left-hand side of an assigment if there are no repeated
values in the list of subscripts.

Array Constructors
A way of assigning an array a set of values along one
dimension only. The constructor is delimited by (/
and /), and the elements are separated by commas.

x(1:4) = (/ 1.2, 3.5, 1.1, 1.5 /) ! a scalar expression
x(1:4) = (/ 1.2, aval, 1.1, bval /) ! also a scalar expression
x(1:4) = (/ a(i,1:2), a(i+1,2:3) /) ! an array expression
x(1:4) = (/ (sqrt(real(i)),i=1,4) /) ! an implied do list

An implied do list is a list of expressions followed by
something that is like an iterative control in a do
statement.

x(1:4) = (/ sqrt(1.0), sqrt(2.0), sqrt(3.0), sqrt(4.0) /) ! equivalent

You can use them for other purposes, too:
 print *, (a(i,i), i = 1,n)

And they are valid in an array declaration:
real, dimension(4) :: x = (/ 1.2, 3.5, 1.1, 1.5 /)

The reshape intrinsic function can be used to
define rank-two and greater arrays using array
constructors:

RESHAPE (source, shape)

Example:
integer, dimension(2,2) :: a
a = reshape((/ 1,2,3,4 /), (/ 2,2 /))

1 3

2 4
1 2 3 4

