
Allocatable Arrays

Fortran 90 allows arrays to be created on-the-fly;
these are known as deferred-shape arrays.

Declaration: (note allocatable attribute, fixed
rank)

integer, dimension(:), allocatable :: ages
real, dimension(:,:), allocatable :: speed

Allocation:
read*, isize
allocate(ages(isize), stat=ierr)
if (ierr /= 0) print*, “ages: allocation failed”

allocate(speed(0:isize-1,10), stat=ierr)
if (ierr /= 0) print*, “speed: allocation failed”

Deallocating Arrays

Heap storage can be reclaimed using the DEALLOCATE
statement:

if (allocated(ages)) deallocate(ages, stat=ierr)

You’ll get an error if you try to deallocate an array
without the allocate attribute or an array that
has not previously been allocated space.

If a procedure containing an allocatable array
which does not have the save attribute is exited
without being deallocated, then this storage
becomes inaccessible.

The WHERE statement and construct
Used to assign values to only those elements of an
array where is logical condition is true.

Single statement form:
where (a < 0) b = 0 ! a and b must be arrays of the same shape

Block form:
where (c /= 0) ! c /= 0 is a logical
 a = b / c ! a and b must conform to c
elsewhere
 a = 0 ! the elements of a are set to 0 where they have not
 ! been set to b/c.
 c = 1 ! the 0 elements of c are set to 1
end where

All statements within a WHERE construct must be
array assignments.

The assignments are executed in the order they are
written: first those in the WHERE block, then those
in the ELSEWHERE block.

WHERE constructs may not be nested.

Element Renumbering in Expressions

The elements in an expression no longer have the same
subscripts as the elements in the arrays that make up
the expression. They are renumbered with 1 as the
lower bound in each dimension.

y(0:7) + z(-7:0) ! result is an array with subscripts 1, 2, 3, ..., 8

integer, dimension(0:6), parameter :: v = (/ 3, 7, 0, -2, 2, 6, -1 /)
maxloc(v) ! result is 2
maxloc(v(2:6)) ! result is 4 because the largest entry (6) is in the
 ! 4th position of the section v(2:6)

