Input/Qutput

Input/Qutput

* |nput/output (i/0) can be wmore a lot more flexible than
just reading typed input from the terminal window
and printing it back out to a screen.

* Fortran allows for multiple file streaws.

* Fortran allows multiple representations of the data

for i/,

* Fortran allows multiple approaches to the sequencing

of i/0.

Multiple File Streams

A keyword nearly vniversal to all Fortrani/o
statements is the Logical Unit

write(11,*)u ! u written to file associated with logical unit 11
write(12,*)v ! v written to file associated with logical unit 12

integer :: lun=3
read(lun,*) n ! logicial unit can be a variable

Pefault filename associated with logical unit lun is
fort.lun (fort.1 1, fort.1 2 fort.3). Compilers may vary!

Some More Definitions

* File - a collection of data

* Data is organized into records, which may
be formatted (character representation),
unformatted (machine binary
representation), or denote an end of file.

The Open Statement

The Open statement associates a logical unit with a

specific file:

OPEN([UNIT=]< integer >,&
FILE=< filename >, IOSTAT=< status_tag >, &

STATUS=< status >, ACCESS=< method >,&
FORM=< format >,&
ACTION=< mode >, RECL=< int-expr >)

Examples:

OPEN(unit=10,file="input.u’,form="formatted’)
OPEN(21,file="output.dat’,form="unformatted’,status="OLD’)

The Open Statement (cont)

More on open keywords:

IOSTAT: a returned integer variable, zero for successful execution;
other values for various errors.

STATUS: character string - ‘UNKNOWN’ (default); ‘OLD’; ‘NEW’;
‘REPLACE”; ‘'SCRATCH’

ACCESS: ‘SEQUENTIAL’ (default) or ‘DIRECT’

FORM: ‘FORMATTED’ or ‘UNFORMATTED’

POSITION: ‘ASIS’ (default) or ‘REWIND’ or ‘APPEND’

RECL: record length for direct access i/o

ACTION: actions one can take with the file - ‘READWRITE’ (default);
“READ”’; or ‘WRITFE’

One can open an already connect file to change its
properties

The Close Statement

The Close statement terminates the connection of a

file to a logical unit.

Close([UNIT=]< integer >,&
IOSTAT=< status_tag >, &

STATUS=< status >)

IOSTAT: integer returned containing theerror status of the call,
zero if no errors

STATUS: what to do with the closed file - ‘KEEP’ (default) or
‘DELETE’

The Write Statement

The Write statement does output generally:

WRITE([UNIT=]< integer >,&
[FMT=]< format >, IOSTAT=< status_tag >, &

END=< label >, ERR=< label >, &
ADVANCE=< advance_mode >, REC=< record_num >)

END and ERR are obsolete, avoid!

Examples:

WRITE(11,’(5e15.8)")t(:)
WRITE(IOSTAT=status_int,UNIT=lun, ADVANCE="NO’)t
WRITE(ERR=909,UNIT=11)t

909 CONTINUE

The Read Statement

The Read statement does input:

OPEN([UNIT=]< integer >,&
[FMT=]< format >, IOSTAT=< status_tag >, &

END=< label >, ERR=< label >, &
ADVANCE=< advance_mode >, REC=< record_num >)

Examples:

READ(11,’(5e15.8)")t(:)
READ(IOSTAT=status_int,UNIT=lun, ADVANCE="NO’)t
READ(ERR=909,END=910,UNIT=11)t

909 CONTINUE

910 CONTINUE

Formatting

The Format specifier is used in read, write and print
statements.

* - default, or list-directed formatting (space or comma delimited)
f (floating point) for printing of reals
syntax: fw.d
w = total number of positions
d = number of places after the decimal point
the decimal point occupies a position, as does a minus sign
e (exponential) for large or small real numbers - ew.d
d = number of digits in mantissa
a (alphanumeric) for character strings

I (integer) for integer - can use iw.d format, where the d will pad in front of
the value with zeroes

Examples:

exp_format1.f90, exp_format2.f90, exp_format3.f90

Unformatted 170

* When the file is opened with
form="unformatted’ the binary will be
read/written in the machine
representation. Use no format specifier!

* Warning! Different machines may have
different representations - big_endian vs.
little_endian; the latter is generally found
on PC chips.

Sequential vs. Direct Access

* In sequential access the end of record is
marked in the file.

* As nawme implies, each read/write proceeds

to next record - exception when
ADVANCE="NO’ used.

* Can move file position with Position
statements

Direct Access

* Must open file with ACCESS="PIRECT” and

specify a record length (reel) (generally in
bytes)

* You go directly where you wish in the file by

specifying the record number (rec=n) in the
READ/WRITE

* Multiple jobs/processes can access the file
without interference

Other Useful Statewments

The Inquire statement can get information about a file.

You may inquire by unit, or by filename:

INQUIRE([UNIT=]< integer >,&
EXIST=< logical >, IOSTAT=< integer >, &
NAME=< character >, OPENED=< logical >)

INQUIRE([FILE=]< filename >,&
EXIST=< logical >, IOSTAT=< integer >, &
NUMBER=< integer >, OPENED=< logical >) ! plus many more available
I arguments

Position statements:

REWIND lun; REWIND (UNIT=lun, IOSTAT=status_.int)
BACKSPACE lun; BACKSPACE (UNIT=lun, IOSTAT=status_.int)
ENDFILE lun; ENDFILE(UNIT=lun, IOSTAT=status_int)

Other Useful Statewments

Nawmelist i/0, a type of formatted i/o (deprecated):

logical :: dopbp

integer :: ijtlen

NAMELIST /pbplist/ dopbp.ijtlen
open(unit=2,file="namel.pbp’,form="formatted’)
read(2,pbplist)

>cat namel.pbp
&pbplist
dopbp=.true.
IUTLEN=4
&END

Internal files: unit is a program variable rather than a
file, no open statement used.

character (len=4) :: year
write(unit=cyear,fmt=(i4.4)’) 1989

170 Libraries

* Typically, with standard fortran i/o statements,
when someone sends you a file, he must also send you a
readme about the contents (which variables,
dimensions, format, ete.) or some code kernel for
reading.

* |t sure would be nice if the data in the files were self-
describing’ with the use of ‘meta-data:

* 1/0 libraries are publicly available that can do this:
NetCDF, HOF

NetCDF

* Something of a standard for climate/meteorogical
data - http:/www.unidata.ucar.edu/software/
netedf/

* [ncludes command line vtilities to inspect the files
(nedump)

* Many graphics packages can read it (1P1)

* NCO (http:/nco.sourceforge.net/) is a set of vtilities
to manipulate netedf files

* Fortran subroutine calls are used to read/write/
inquire about the data.

NetCDF (network Common Data Form) is a set of interfaces for array-
oriented data access and a freely-distributed collection of data access
libraries for C, Fortran, C++, Java, and other languages. The netCDF
libraries support a machine-independent format for representing
scientific data. Together, the interfaces, libraries, and format support
the creation, access, and sharing of scientific data.

NetCDF data is:

. Self-Describing. A netCDF file includes information about the data
it contains.

. Portable. A netCDF file can be accessed by computers with
different ways of storing integers, characters, and floating-point numbers.

. Direct-access. A small subset of a large dataset may be accessed
efficiently, without first reading through all the preceding data.

Appendable. Data may be appended to a properly structured
netCDF file without copying the dataset or redefining its structure.

. Sharable. One writer and multiple readers may simultaneously
access the same netCDF file.

» Archivable. Access to all earlier forms of netCDF data will be
supported by current and future versions of the software.

include "netcdf.inc"
status = nf_open(&
“infile.nc", nf_nowrite, ncidin)
status = nf_ing_ndims(ncidin, ndims)
status = nf_ing_nvars(ncidin, nvars)
do n = 1,ndims
status = nf_ing_dim(ncidin, n, dimname, dimlen)
enddo
do n =1,nvars
status = nf_ing_var(ncidin, n, varname, vartype, vardims, &
vardimids, varnatts)
do k = 1,varnatts
status = nf_ing_attname(ncidin, n, k, atthame)
enddo
if(vartype.eq.nf_float) &
status = nf_get_var_real(ncidin, n, float_1din)
enddo

