Structures and
Perived Types




Introduction

I8 often useful to group related variables or
components into a single entity or structure, and
these may even be comprised of objects of different

types.

address
person

remarks




person

nawe

address

phone

remarks

number

city

area_co
nuwmber




First we define the various types of our structure:

type phone_type
integer :: area_code, number
end type phone_type

type address_type
integer :: number
character (len = 30) :: street, city
character (len = 2) :: state
integer :: zip_code

end type address_type

type person_type
character (len = 40) :: name
type (address_type) :: address
type (phone_type) :: phone
character (len = 100) :: remarks
end type person_type

Since phone_type and address_type were defined
before person_type, we could use them as
components of the person_type structure.




Peclaring and Using Structures
Now we can define a variable using our new derived

type:

type (person_type) :: joan
type (person_type), dimension(1000) :: black_book

Note the difference between a type definition and a
type declaration.

Also, the component nawes are local to the structure,
s0 there is no problem if the same program unit also
uses simple variables like number, street, city, ete.

* The only thing you cawt put into a derived type is an
allocatable array, but you can use a pointer to
achieve exactly the same thing.




Referencing Structure Components

Write the name of the structure followed by a Z and
then the name of the component:

joan % address ! blanks are permitted but not required
joan % address % state
joan % phone % area_code

black_book(42) = joan ! copy all components
black_book(42) % address % number = joan % address % number + 1

Note the difference between a type definition and a
type declaration.




Let$ look at an example of how structures could be
used in a program. Suppose we want to print out the
nawes of all persons who live in a given zip code:

subroutine find_zip (zip)

integer, intent(in) :: zip
integer :: entry

do entry = 1, number_of_entries
if (black_book(entry) % address % zip_code == zip) then
print *, black_book(entry) % name
endif
enddo

end subroutine find_zip




Structure Constructors

Each derived-type definition creates a constructor
whose name is the same as that of the derived type,
and it can be used to create a structure of the named
type.

joan % phone = phone_type(505, 2750800)

It is not necessary that the function arguments be
constants:

joan = person_type(“Joan Doe”, john % address, &
phone_type(505, fax_number - 1), &
“Same address as husband John”)




A feal world” example from the CSU global couple
model (and a teaser):

type, public :: gp_type

integer (kind=int_kind) :: itag

character (len=30) :: name

character (len=30) :: units

character (len=80) :: descr

integer (kind=int_kind) :: nsamples

logical (kind=log_kind) :: log

logical (kind=log_kind) :: amip_sampling

real (kind=real_kind), pointer :: qp2_data(:,:,:)

real (kind=real_kind), pointer :: qp3_data(:,:,:,:)
end type

So you cant use an allocatable (dynawic) array
within a structure, but you can effectively do it
using a pointer array.




Modules and
Interfaces




Introduction

* Passing arquments is not always the most effective
way to share a large number of variables among many
different procedures, and on some systems may
actually reduce efficiency.

* Modules provide another way of sharing constants,
variables and type definitions.

* They also provide a way of sharing procedures, which is
useful when building a library of data and procedures
that can be accessible to many different programs.

* A wmodvule is a program unit that is not executed
directly, but contains data specifications and
procedures that may be vtilized via the use statement.




module nameOfModule
implicit none
I-- declare data and interface statements
contains
I-- subroutines and functions are declared here
end module nameOfModule

I-- use a module

program mainProgram
use nameOfModule ! must be first
implicit none

end program mainProgram




A simple example:

module trig_constants

implicit none

real, parameter :: pi = 3.1415926, rtod = 180.0/pi, dtor = pi/180.0
end module trig_constants

program calculate
use trig_constants
implicit none
real :: angle = 30.0
write(*,*) sin(angle*dtor)
end program calculate

* USE statements always precede all other types of
specification, including IMPLICIT NONE.

* The module must be compiled before all other
program units which use it.

* Why not just use an include statement instead?




Advantages of Modules

* Module procedures can be accessed by the main
program as well as any other module and procedures.

* We can control accessibility of data and procedures.
* yse some_module, only: x, vy, z
* also public and private statements/attributes
* We can avoid name clashes.
* Use some_wmodule, nu => nr_of_unknowns
Combo:
* use some_module, only : dbl => double, quad




* Theinterface of module procedures is automatically
explicit. This means that the compiler can check actual
and dummy arguments for consistency. Also, we need
explicit interfaces to use ‘advanced features” like
assuwmed-shape arrays, pointer arrays, optional
arguments, user-defined operators, ete.

* see badpass.f90, goodpassl.f90, ete.




