
Generic Procedures

Many intrinsic procedures are generic in that they
allow arguments of different types (e.g., abs will take
an integer, real or complex argument). We can write
our own generic procedures in Fortran 90 with the
help of interface statements.

The correct routine is picked for execution based on the
types of the arguments - they must be different for
this to work correctly!

Example: the swap subroutine (genericswap.f90).

Parameterized Data Types

Fortran 77 had a problem with numeric portability. A
default REAL might support numbers up to 10^68 on
one machine and up to 10^136 on another.

Kind parameters provide a way to parameterize the
selection of different possible machine representations
for each of the intrinsic data types (integer, real,
complex, logical and character).

This provides a mechanism for making selection of
numeric precision and range portable. For the
character data type, it permits the use of more than
one character set within a program.

Each intrinsic data type has a kind parameter
associated with it which is intended to designate a
machine representation.

A particular implementation might have three “real”
kinds: single, double and quadruple precision.

The kind is specified with an integer:

INTEGER (kind=2) or INTEGER(2)

BUT the standard does not define what the integer
means!!! So kind parameters 1, 2 and 3 might be
single, double and quadruple precision on one
system, but on a different system the kind
parameters 4, 8 and 16 may represent the same
thing. (example: mykinds.f90)

The only requirements are that there must be at least
two real and complex kinds, and at least one kind for
the integer, logical and character intrinsic types.

The intrinsic functions selected_int_kind and
selected_real_kind may be used to select an
appropriate kind for a variable or a named constant.

selected_int_kind(P): returns the kind value of the
smallest integer type that can represent all values
ranging from -10^P to 10^P (exclusive). If there is no
integer kind that can accomodate this range,
selected_int_kind returns -1.

selected_real_kind(P, R): returns the kind value of a
real data type with decimal precision of at least P
digits and exponent range greater than at least R.

return value:

-1 = processor does not support a real data type
with a precision >= P.

-2 = processor does not support a real data type
with an exponent range >= R.

-3 = neither is supported

example: whatkinds.f90

KEY: put definitions in a module and use this
throughout your code!!!

CSU GCM example: kinds.F
 module kinds
 integer, parameter :: int_kind = kind(1), &
 log_kind = kind(.true.), &
 real_kind = selected_real_kind(6), &
 dbl_kind = selected_real_kind(13)
 end module kinds

Sample computational : elliptic_solver.F
 module elliptic_solver
 use kinds
 use physical_parameters
 .
 .
 logical (kind=log_kind),parameter :: l_multigrid = .true.
 integer (kind=int_kind) :: bad_apples,iter,iter_max,n1,n2
 real (kind=dbl_kind), parameter :: rconverge = 1.0E-20_dbl_kind

Constants may have their kind parameter appended
where kind matching is required (e.g., in procedure
arguments):

call some_routine (1.0_dbl_kind, 45_int_kind, x, y, ...)

Simple example: passkinds.f90

And another interesting example: pi.f90

