
Floating Point
Arithmetic

Floating point numbers are a subset of the rational
numbers. However, they are bounded, and they have a
finite density on the number line. Thus, your number
may only be approximately represented in fp numbers,
and results of operations involving floating point
numbers may not reside among the floating point
numbers.

Floating Point
Approximations

The result may lie between two fp numbers and will
assume one of the two fp values

The result may lie between zero and the smallest fp
representation (in absolute value). This is underflow.
Compilers typically set this to zero. Watch for
division problems. Many compilers have options to
otherwise flag underflows.

Floating Point
Approximations

The result may lie beyond the domain of fp numbers.
This is overflow, typically output as Inf.

The result may not be mathematically permissible -
log(0.), sqrt(-1.), etc. This is invalid operation, typically
output as NaN (not a number).

This last three classes are known as floating point
exceptions. Depending on the run environment, the
program may terminate or continue when these are
encountered.

see exceptions.f90

FP Error Analysis
x’ = x*(1+d), y’=y*(1+e), d, e are relative error

x’*y’ = x*y*(1+e+d+...), e+d is the relative error, still
small

x’+y’ = x+y + d*x + e*y, if x, y are of opposite signs, x+y
can be considerably smaller than x or y, large relative
error

Algorithm design must account for vagaries of fp
arithmetic, ill-conditioning.

see var.f90

Code Optimization

Three kinds of program inefficiencies:

a computation-bound program

a memory-bound program

an i/o-bound program

Efficient Computation

AVOID DIVISION! - takes many clock cycles.
If you will divide by the same number
frequently, compute and save its inverse
and multiply with it.

most cpus can do an addition and a
multiplication simulateously - write code
statements that tend to pair them.
a(i) = a(i) + b(i)*c(i)

Compiler Optimization
Compilers have flags to perform optimization,
typically -O, -O3, -O4

Compilers often have other flags to do quicker,
but more approximate arithmetic.

Compiler optimization techniques include loop-
unrolling.

Compiler optimization carries risk! Make sure
your program gives the same answer optimized
and unoptimized.

Original loop:
do i = 1, ni
 a(i) = a(i) + b(i)*c(i)
enddo

Unrolled loop:
do i = 1, ni, 4
 a(i) = a(i) + b(i)*c(i)
 a(i+1) = a(i+1) + b(i+1)*c(i+1)
 a(i+2) = a(i+2) + b(i+2)*c(i+2)
 a(i+3) = a(i+3) + b(i+3)*c(i+3)
enddo

Subroutine Bottlenecks
Subroutine calls use lots of clock cycles
which increases with the number of
arguments.

Passing array subsections into subroutines
requires a physical copy before any work is
done.

see sort_3a.f90, sort_3b.f90

Inlining is an effective way to optimize
this. There are usually compiler tools to do
this.

Efficient Memory

Memory efficiency is typically about
managing cache use.

Avoid long strides - tend to force the
program out of cache more frequently

GOOD:
do j = 1, nj
 do i = 1,ni
 a(i,j) = a(i,j) + b(i,j)*c(i,j)
 enddo
enddo

BAD:
do i = 1, ni
 do j = 1,nj
 a(i,j) = a(i,j) + b(i,j)*c(i,j)
 enddo
enddo

I/O Management

I/O bandwidth is much smaller than memory.
Local disks are faster than remote mounted
filesystems.

Unformatted I/O avoids conversion of data.

Vendor specific techniques to overlap i/o and cpu
usage - asynchronous i/o

Where to Optimize?
Profiling

Profiling directs the programmer where to focus
optimization efforts - work on the piece of code
that consumes most of the time.

On Mac OS X, use Shark, no special compilation
necessary.

Other platforms have proprietary profilers, often
need to use special compile flags. Look for prof or
gprof.

Other performances monitors tell you the flop-
rate, cache usage, other measures of performance.

Shark
Launch /Developer/Applications/Performance
Tools/Shark.app, start your program running,
choose time profile, then start/stop Shark.

Debugging
You’ve written your program, it compiles. Now you
run it and it either crashes, or gives you bad output
- what do you do now? You want to find out two
things - where the error happens, and the values of
variables at that point.

Types of errors:

Floating point exception - divide by zero, other Nan
operations. These need to be trapped, may need to
enable floating point trapping.

Bus error, Segmentation fault - often involve a
memory error: bad subscript, bad argument
passing, often cryptic.

Poor man’s debugger -
the write statement

Judicious use of write statements can tell you where
the program crashed and what values the variables
had.

Every time you add write statements you need to
recompile. A slow, iterative process unless you
already have a good hunch what has happened and
you just want to confirm it.

Compiler debug tools
Many compilers have options to provide extra
checking both during the compilation stage and
during run-time. These cause the program to incur
overhead and should be turned off when the
debugging is finished.

Array bounds checking: detects if an array subscript
is out of bounds

uninitialized variable initialization - all variables
are initialized with a floating point exception. This
lets you detect if you are using a variable before it
has been assigned a value.

Where is the error?
A program that terminates abnormally often
generates a core file. The core file is a snapshot of the
program contents at the time of crash. It includes a
traceback (which program statement you are at),
and the values of each variable.

Some platforms generate the traceback apart from
the core.

There are debugger utilities to examine the core file.
To use these you need to compile your program with
symbols -g flag. It is usually best to turn off compiler
optimization as well.

Command line debuggers
There are a host of similar command line debuggers
that depend on the platform: dbx, gdb, pgdbg, idb

To examine a core file: gdb executable core; then at
prompt type where

Examine values of variables: print i; print x(3,3)

Usually, you find you need to back up in the program
and examine variables prior to the crash point.
Setting breakpoints lets you choose places to halt
execution of the code: stop line_number

Other useful debugger
commands

Execution: r (run from beginning), c (continue),
s (step one line), n (next line)

Examine code: l (list 10 lines), l line_number, list
filename.f

u (up one program level), d (down one program level)

Graphical Debuggers
The power of a debugger is enhance many-fold with
a graphical user interface. Many sites support
Totalview

