
Subroutines and
Functions

Procedures: Subroutines and Functions

There are two types of procedures:
SUBROUTINE: a parameterized named sequence of
code which performs a specific task and can be
invoked from other program units.
• invoked with the CALL statement
FUNCTION: same as a subroutine but returns a
result in the function name.
• invoked by placing the function name (and its

associated arguments in an expression)
• use when just one return value is needed.
Example: sort3.f90 and sort_3.f90

Notes

This simple example illustrates one of the
important uses of subroutines: To exhibit the
overall structure of a program and put the details
in another place.
Internal subroutines and functions are designated
by the contains statement.
The implicit none in the host program applies to
the internal subroutines. Also used in modules.
Can we go even further with this example?

Look at sort_3a.f90

Subroutines with Arguments

We can pass values to a subroutine by placing them
in parentheses after the name of the subroutine in
the call statement.
In the call to swap, n1 and n2 are called arguments.
To make subroutine swap available to other program
units, we would need to place it within a module.

Functions

Just like a subroutine, but intended to return one
value (or an array of values). Invoked just like an
intrinsic function.
The result of a function should be placed in a result
variable using the result keyword at the end of the
function statement.
If the result keyword and variable are omitted, the
function name is used as the return variable and
must be declared in the function)
Example: series.f90

Argument Association

The variables a and b in subroutine swap are place
holders for the two numbers to be swapped. These
are dummy arguments and must be declared in the
subroutine. The variables n1 and n2 in the first call
to swap are the actual arguments.
If the value of a dummy argument changes, then so
does the value of the actual argument (pass-by-
reference).
An actual argument that is a constant or an
expression more complicated than a variable can
only pass a value to the corresponding dummy
argument. This is called pass-by-value.

It is bad programming practice to modify
arguments in function calls.

In general, the number of actual and dummy
arguments must be the same.

Also, the data type (and kind parameter) of each
actual argument must match that of the
corresponding dummy argument.

Keyword arguments and optional arguments: best
explained by an example (series2.f90)

Argument Intent

It’s good programming practice to indicate whether
a dummy argument will be:
• Only be referenced -- INTENT(IN)
• Be assigned to before use -- INTENT(OUT)
• Be referenced and assigned to -- INTENT(INOUT)
The use of INTENT attributes is recommended as it:
• Allows good compilers to check for coding errors.
• Facilitates efficient compilation and optimization.
Example: series3.f90

Scope
The scope of a name is the set of lines in a Fortran
program where that name may be used and refer to
the same variable, procedure or type.
In general, the scope extends throughout the
program unit where the entity is declared (host
association).
• Known to any procedures declared within.
• Example: calculatepay.f90
But NOT if the same entity is redeclared in an
internal procedure. (myscope.f90)
Module scope is a little different -- we’ll cover that
later (use association).

The Save Attribute

Fortran 77 compilers generally used static storage
for all variables. Most Fortran 90 systems use
static storage only when required. This means that
local variables in subroutines and functions will
NOT be preserved after control returns unless:
• The variable is initialized.
• The SAVE attribute is used. real, save :: p, q

There’s also a SAVE statement but the use of the
attribute in declarations is the preferred usage.

The Return Statement

RETURN causes execution of a procedure to
terminate with control given back to the calling
program.
Can be useful in more elaborate procedures as an
alternative to a complicated set of nested if
constructs.

