
Arrays

Introduction to Arrays
More often than not, you will be working with more
than just individual data values. Instead, you will have
an entire list or set of data that is all the same type.
And you definitely don’t want to work with them this
way:

real :: rh_1, rh_2, rh_3, rh_4, rh_5, ...
 ...
rh_1 = 88.2; rh_2 = 74.8; rh_3 = 55.4; ...

In Fortran, a collection of values of the same type is
called an array. This allows us to do this instead:

real, dimension(1000) :: rh
rh(1) = 88.2; rh(2) = 74.8; rh(3) = 55.4
print*, rh(1:3)
print*, rh

The numbers in parenthesis that specify the
location of an item within an array are called
subscripts (borrowed from mathematics). It’s
customary to refer to the expression x(3) as “x sub
3”.

We can use variables as subscripts, too!
i = 1
print*, rh(i)

So you might imagine writing a subroutine that
would print out all of our rh records. Let’s take a
look! rhvals.f90

Array Terminology and Declarations

The preferred method of declaring arrays is to use the
dimension attribute in a type statement:

real, dimension(15) :: x
real, dimension(1:5,1:3) :: y, z

The above are explicit-shape arrays.
Some terminology:

Rank = number of dimensions
The rank of X is 1; rank of Y and Z is 2.

Bounds = upper and lower limits of indices
The bounds of X are 1 and 15; bounds of Y and Z are 1 and 5 and 1 and 3.

Extent = number of elements in dimension
The extent of X is 15; extents of Y and Z are 5 and 3.

Size = total number of elements
Size of X, Y and Z is 15.

Shape = rank and extents
Shape of X is 15; shape of Y and Z is 5,3.

Conformable = same shape
Y and Z are conformable.

More on Declarations
Literals and constants can be used in array
declarations (with some caveats).
The default lower bound is 1.
Bounds can begin and end anywhere (i.e., you can use
zero as a subscript as well as negative subscripts).

Examples:
real, dimension(1:100) :: r is the same as real, dimension(100) :: r
real, dimension(1:10, 1:10) :: s
real :: t(10,10)
real, dimension(-10:-1) :: u
real, dimension(2,5,-1:8) :: x ! this has a rank of 3, extents of 2, 5 and 10,
 ! a shape of (/ 2, 5, 10 /), and a size of 100

integer, parameter :: lda = 5
real, dimension(0:lda-1) :: y
real, dimension(lda,lda+1,lda+2) :: big_array

Declarations using colons for the subscripts may be
used for a dummy argument of a procedure. This
indicates that the shape of the dummy array is to be
taken from the actual argument used when the
procedure is called. This is known as an assumed-
shape array.

Example: rhvals2.f90
The declaration of arrays may also use values of
other dummy arguments to establish extents. These
are called automatic arrays.

Example:
subroutine s2 (dummy_list, n, dummy_array)

real, dimension(:) :: dummy_list
real, dimension(size(dummy_list)) :: local_list
real, dimension(n,n) :: dummy_array, local_array
real, dimension(2*n + 1) :: longer_local_list

Array Syntax
We can reference:

whole arrays
a = 0.0 ! set all elements of the array a to zero
b = c + d ! adds the elements of c and d together, assign result to b

individual elements
a(1) = 0.0 ! set just one element of the array to zero
b(0,0) = a(3) + c(5,1)

array sections
a(2:4) = 0.0 ! set a(2), a(3) and a(4) to zero
b(-1:0,1:2) = c(1:2,2:3) + 1.0 ! adds one to the subsection of c

Array-valued Expressions and Assignment
Arrays are now first-class objects, and array-valued
expressions are evaluated element-wise, which saves
writing many simple loops:

real, dimension(512,1024) :: raw, background, exposure, result, std_err
...
result = (raw - background) / exposure

Similarly, all appropriate intrinsic functions operate
element by element if given an array as an argument:

std_err = SQRT(raw) / exposure

Note that the arrays must be conformable for these
operations to be valid.

background = 0.1 * exposure + 0.125 ! can include scalar constants and
 variables

Array Sections
We can select a portion of an array to use in a
particular computation with subscript-triplets. The
general form is
 [<bound1>] : [<bound2>] [:<stride>]

Examples:
x(:) ! the whole array
x(3:9) or x(3:9:1) ! x(3) to x(9) in steps of 1
x(m:n) or x(m:n:k) ! use integer variables as bounds and stride
x(8:3:-1) ! x(8) to x(3) in steps of -1
x(m:) ! from x(m) to default upper bound
x(:n) ! from default lower bound to x(n)
x(::2) ! from lower bound to upper bound in steps of 2
x(m:m) ! one element section

Slice assignment: can involve overlapping slices
a(2:10) = a(1:9) ! shift up one element
b(1:9) = b(3:11) ! shift down two elements

Vector subscripts may also be used:
integer, dimension(4) :: mysub = (/ 32, 16, 17, 18 /)
real, dimension(100) :: vector
...
write(*,*) vector(mysub)

Note that vector subscripts can only be used on the
left-hand side of an assignment if there are no
repeated values in the list of subscripts.

Array Constructors
A way of assigning an array a set of values along one
dimension only. The constructor is delimited by (/
and /), and the elements are separated by commas.

x(1:4) = (/ 1.2, 3.5, 1.1, 1.5 /) ! a scalar expression
x(1:4) = (/ 1.2, aval, 1.1, bval /) ! also a scalar expression
x(1:4) = (/ a(i,1:2), a(i+1,2:3) /) ! an array expression
x(1:4) = (/ (sqrt(real(i)),i=1,4) /) ! an implied do list

An implied do list is a list of expressions followed by
something that is like an iterative control in a do
statement.

x(1:4) = (/ sqrt(1.0), sqrt(2.0), sqrt(3.0), sqrt(4.0) /) ! equivalent

You can use them for other purposes, too:
 print *, (a(i,i), i = 1,n)

And they are valid in an array declaration:
real, dimension(4) :: x = (/ 1.2, 3.5, 1.1, 1.5 /)

The reshape intrinsic function can be used to
define rank-two and greater arrays using array
constructors:

RESHAPE (source, shape)

Example:
integer, dimension(2,2) :: a
a = reshape((/ 1,2,3,4 /), (/ 2,2 /))

1 3

2 4
1 2 3 4

Allocatable Arrays
Fortran 90 allows arrays to be created on-the-fly;
these are known as deferred-shape arrays.

Declaration: (note allocatable attribute, fixed
rank)

integer, dimension(:), allocatable :: ages
real, dimension(:,:), allocatable :: speed

Allocation:
read*, isize
allocate(ages(isize), stat=ierr)
if (ierr /= 0) print*, “ages: allocation failed”

allocate(speed(0:isize-1,10), stat=ierr)
if (ierr /= 0) print*, “speed: allocation failed”

Deallocating Arrays

Heap storage can be reclaimed using the DEALLOCATE
statement:

if (allocated(ages)) deallocate(ages, stat=ierr)

You’ll get an error if you try to deallocate an array
without the allocate attribute or an array that
has not previously been allocated space.
If a procedure containing an allocatable array
which does not have the save attribute is exited
without being deallocated, then this storage
becomes inaccessible.

The WHERE statement and construct
Used to assign values to only those elements of an
array where is logical condition is true.

Single statement form:
where (a < 0) b = 0 ! a and b must be arrays of the same shape

Block form:
where (c /= 0) ! c /= 0 is a logical
 a = b / c ! a and b must conform to c
elsewhere
 a = 0 ! the elements of a are set to 0 where they have not
 ! been set to b/c.
 c = 1 ! the 0 elements of c are set to 1
end where

All statements within a WHERE construct must be
array assignments.

The assignments are executed in the order they are
written: first those in the WHERE block, then those
in the ELSEWHERE block.

WHERE constructs may not be nested.

Element Renumbering in Expressions

The elements in an expression no longer have the same
subscripts as the elements in the arrays that make up
the expression. They are renumbered with 1 as the
lower bound in each dimension.

y(0:7) + z(-7:0) ! result is an array with subscripts 1, 2, 3, ..., 8

integer, dimension(0:6), parameter :: v = (/ 3, 7, 0, -2, 2, 6, -1 /)
maxloc(v) ! result is 2
maxloc(v(2:6)) ! result is 4 because the largest entry (6) is in the
 ! 4th position of the section v(2:6)

