
Intrinsic Numeric Operations

The following operators are valid for numeric
expressions:

** exponentiation (e.g., 10**2)
 evaluated right to left: 2**3**4 is evaluated as 2**(3**4)
* and / multiply and divide (e.g, 10*7/4)
+ and - plus and minus (e.g., 10+7-4 and -3)

Can be applied to literals, constants, scalar and array
objects. The only restriction is that the RHS of **
must be scalar, and expressions containing consecutive
arithmetic operators are not allowed.

a = b - c f = -3*6/5 x = y**3
a**-b a*-b BAD but you can use a**(-b) and a*(-b)

Relational Operators

The following relational operators deliver a LOGICAL
result when combined with numeric operands:

old form: .GE. .GT. .EQ. .NE. .LE. .LT.
new form: >= > == /= <= <

For example:
bool = i > j
if (i == j) c = d

Use of the relational operators == and /= with floating
point numbers (real variables) is extremely dangerous
because the value of the numbers may be different
from the expected mathematical value due to radix
conversion and roundoff errors.

INTEGERs are stored exactly (often in the range
-32767 to 32767)

REALs are stored approximately.

They are partitioned into a mantissa and an
exponent, 6,6356 x 10**23

The exponent can take only a small range of
values.

Instead, compare against a suitable range or
tolerance.

IF (a == b) then ... this is BAD!!!
IF (ABS(a-b) <= EPS) ... where EPS is thoughtfully chosen!!!!

Intrinsic Logical Operators

A LOGICAL or boolean expression returns a .TRUE.
or .FALSE. result. The following are valid LOGICAL
operands:

.NOT. : .true. if operand is .false.

.AND. : .true. if both operands are .true. (logical conjunction)

.OR. : .true. if at least one operand is .true. (logical disjunction)

.EQV. : .true. if both operands are the same (logical equivalence)

.NEQV. : .true. if both operands are different (logical nonequivalence)

For example:
x = 5 > 3 ==> .true. y = 4*3>15 ==> false
.NOT. x is .false., .NOT. y is .true.
x .AND. y is .false., x .AND. x is .true.
x .OR. y is .true., y .OR. y is .false.
x .EQV. y is .false., x .EQV. x is .true., y .EQV. y is .true.
x .NEQV. y is .true., x .NEQV. x is .false., y .NEQV. y is .true.

Intrinsic Character Operations

Consider:
character(len=*), parameter :: str1 = “abcdef”
character(len=*), parameter :: str2 = “xyz”

Substrings can be taken:
str1(1:1) is ʻaʼ ; str1(2:4) is ʻbcdʼ

The concatenation operator, //, is used to join two
strings:

print*, str1 // str2
print*, str1(4:5) // str2(1:2)

 would produce
abcdefxyz
dexy

Operator Precedence
Operator Precedence Example

user-defined monadic highest .INVERSE. A
** . 10**4

* or / . 89*55
monadic + or - . -4
dyadic + or - . 5+4

// . str1//str2
>, >=, <, <=, etc. . A > B

.NOT. . .NOT. Bool
.AND. . A .AND. B
.OR. . A .OR. B

.EQV. or .NEQV. . A .EQV. B
user-defined dyadic lowest x .DOT. y

In an expression with no parentheses, the highest
precedence operator is combined with its operands
first.

In context of equal precedence, left to right
evaluation is performed except for **
(exponentiation), which is performed right to left.

2**3**2 = 512 (2**9)

Example: The following expression
x = a+b/5.0-c**d+1*e

is equivalent to

x = a + (b/5.0) - (c**d) + (1*e)

as ** is highest precedence, and / and * are next
highest. The remaining operators precedences are
equal, so we evaluate from left to right.

Flow Control

Control constructs allow the normal sequential
order of execution to be changed. Fortran 90
supports:

Conditional execution statements/constructs (IF
and IF-THEN-ELSEIF-ELSE-ENDIF)

Loops (DO-ENDDO)

Multi-way choice construct (SELECT CASE)

IF Statement
The basic syntax is

IF (<logical-expression>) <exec-statement>

If <logical-expression> evaluates to .TRUE., then
execute <exec-statement>, otherwise do not.

For example:
if (x > y) maxval = x

means “if x is greater than y then set maxval to be
equal to the value of x”.

More examples:
if (a*b+c <= 47) Boolie = .true.
if (i /= 0 .and. j /= 0) k = 1/(i*j)

IF...THEN...ELSE Construct

The block-IF is a more flexible version of the single
line IF. A simple example:

if (i == 0) then
 print*, “i is zero”
else
 print*, “i is NOT zero”
endif

You can also have one or more ELSEIF branches:
if (i == 0) then
 print*, “i is zero”
elseif (i > 0) then
 print*, “i is greater than zero”
else
 print*, “i must be less than zero”
endif

And you can use multiple ELSEIF branches. The first
branch to have a true logical-expression is the one
that is executed. If none are found, then the ELSE
block (if present) is executed.

if (x > 3) then
 call sub1
elseif (x < 2) then
 a = b*c - d
elseif (x < 1)
 a = b*b
else
 if (y /= 0) a = b
endif

Notice how you can nest if-blocks.

Nested and Named IF Constructs

All control constructs can be both named and nested:
outa: if (a /= 0) then
 print*, “a /= 0”
 if (c /= 0) then
 print*, ʻa/ = 0 AND c/= 0ʼ
 else
 print*, ʻa /= 0 BUT c == 0ʼ
 endif
elseif (a > 0) then outa
 print*, “a > 0”
else
 print*, “a must be < 0”
endif outa

The names may only be used once per program unit and
are only intended to make the code cleaner.

DO Loops

The general form of a DO loop is:
[name:] do [control clause]
 [block of code]
enddo [name:]

There are three possible control clauses:

Iterative (or indexed)

While

Empty (use EXIT and CYCLE)

Indexed DO Loops

Loops can be written which cycle a fixed number of
times. For example:

do i = 1, 100, 1
 ... ! i is 1, 2, 3, ..., 100
enddo

The formal syntax is:
do <do-var> = <expr1>, <expr2> [,<expr3>]
 <executable statements>
enddo

The number of iterations, which is evaluated before
execution of the loop begins, is calculated as

MAX(INT((<expr2> - <expr1> + <expr3>) / <expr3>), 0)

If this is zero or negative then the loop is not executed.

If <expr3> is absent it is assumed to be equal to 1.

Examples of Loop Counts

1. Upper bound not exact:
do i = 1, 30, 2
 ... ! i is 1, 3, 5, 7, ..., 29
 ... ! 15 iterations
enddo

2. Negative stride:
do j = 30, 1, -2
 ... ! j is 30, 28, 26, 24, ..., 2
 ... ! 15 iterations
enddo

3. A zero-trip loop:
do k = 30, 1, 2
 ... ! 0 iterations -- loop skipped
enddo

Exit DO Loops

You can also set up a DO loop which is terminated by
simply jumping out of it with an EXIT statement.
Consider:

i = 0
do
 i = i + 1
 if (i > 100) exit
 print*, “i is “, i
enddo

 ! if i>100 control jumps here
 print*, “Loop finished. i now equals”, i

Example: exitloop.f90

Conditional Cycle Loops
You can set up a DO loop which, on some iterations, only
executes a subset of its statements. Consider:

i = 0
do
 i = i + 1
 if (i >= 50 .and. i <= 59) cycle
 if (i > 100) exit
 print*, “i is “, i
enddo

 print*, “Loop finished. i now equals”, i

CYCLE forces control to the innermost active DO
statement and the loop begins a new iteration.

i is 1
i is 2
...
i is 49
i is 60
...
i is 100
Loop finished. i now equals 101

Named and Nested Loops
Loops can be given names and an EXIT or CYCLE
statement can be made to refer to a particular loop:

outa: do
 inna: do
 ...
 if (a > b) EXIT outa
 if (a == b) CYCLE outa
 if (c > d) EXIT inna
 if (c == a) CYCLE
 enddo inna
enddo outa

The (optional) name following the EXIT or CYCLE
highlights which loop the statement refers to.

Loop names can only be used once per program unit.

EXAMPLE: nested_loops.f90

DO WHILE Loops

The general form of a DO loop is:
[name:] do while [logical expression]
 [block of code]
enddo [name:]

Generally the body of the do-loop will modify one of
more of the variables contained or affecting the
logical expression test.

do while (diff > somevalue)
 .
 .
 diff = ABS(old-new)
 .
enddo

SELECT CASE Construct
This is very useful if one of several paths must be
chosen based on the value of a single expression.
The syntax is:

[<name>] select case (< case-expr >)
 case (< case-selector >) [<name>]
 < exec-statements >
 case default [<name>]
 < exec-statements >
end select [<name>]

Notes:

the < case-expr> must be scalar and INTEGER,
LOGICAL or CHARACTER valued.

the < case-selector > is a parenthesised single value
or range. for example, (.true.), (1), or (99:101).

there can only be one CASE DEFAULT branch.

control cannot jump into a CASE construct.

EXAMPLES: select_example.f90 and
select_example2.f90

Mixed Type Numeric Expressions

In the CPU calculations must be performed between
objects of the same type, so if an expression mixes type
some objects must change type.
Default types have an implied ordering:

1. INTEGER -- lowest

2. REAL

3. DOUBLE PRECISION

4. COMPLEX -- highest

The result of an expression is always of the highest
type. For example:

INTEGER * REAL gives a REAL (3 * 2.0 = 6.0)

REAL * INTEGER gives a REAL (3.0 * 2 = 6.0)

DOUBLE PRECISION * REAL gives DOUBLE PRECISION

COMPLEX * <any type> gives COMPLEX

DOUBLE PRECISION * REAL * INTEGER gives DOUBLE
PRECISION

The actual operator is unimportant.

Mixed Type Assignment

Problems often occur with mixed-type arithmetic. The
rules for type conversion are given below.

• INTEGER = REAL

the RHS is evaluated, truncated (all of the
decimal places lopped off) and assigned to the
LHS.

• REAL = INTEGER

the RHS is promoted to be REAL and stored
(approximately) in the LHS.

Example: program mixedassign.f90

Intrinsic Procedures
Fortran 90 has over 100 built-in or intrinsic
procedures to perform common tasks efficiently. They
below to a number of classes:

Elemental
• Mathematical (SQRT, SIN, LOG, etc.)
• Numeric (ABS, CEILING, SUM, etc.)
• Character (INDEX, SCAN, TRIM, etc.)
• Bit (IAND, IOR, ISHFT, etc.)

Inquiry (ALLOCATED, SIZE, etc.)
Transformational (REAL, TRANSPOSE, etc.)
Miscellaneous or non-elemental subroutines
(SYSTEM_CLOCK and DATE_AND_TIME)

Introduction to Formatting

Fortran 90 has extremely powerful, flexible and easy-
to-use capabilities for output formatting.

The default formatting may be sufficient on your
computer for now, but sometimes roundoff error
causes “ugly” looking real values.

It’s not a malfunction of the computer’s
hardware, but a fact of life of finite precision
arithmetic on computers.
Replace the asterisk denoting the default
format with a custom format specification.
Example: add_2_reals.f90

Edit Descriptors
The three most frequently used edit descriptors are:

f (floating point) for printing of reals
syntax: fw.d

w = total number of positions
d = number of places after the decimal point

• the decimal point occupies a position, as does a
minus sign

a (alphanumeric) for character strings
i (integer) for integer - can use iw.d format, where
the d will pad in front of the value with zeroes

Also the new line (/) and tab (t) edit descriptors.
Example: format_examples.f90

