
Structures and
Derived Types

Introduction
It’s often useful to group related variables or
components into a single entity or structure, and
these may even be comprised of objects of different
types.

name

address

phone

remarks

person

name

address

phone

remarks

person

number

street

city

state

zip_code

area_co

number

Start with a really simple example.
First we need a type definition statement:

type line
 integer :: line_number
 character (len = line_length) :: text
end type line

Second we need a type declaration statement:
type (line) :: new_line

Now we can actually assign values and work with
new_line:

new_line%line_number = 5
new_line%text = ʻMary had a little lamb.ʼ

Let’s try this with our black book example:
type phone_type
 integer :: area_code, number
end type phone_type

type address_type
 integer :: number
 character (len = 30) :: street, city
 character (len = 2) :: state
 integer :: zip_code
end type address_type

type person_type
 character (len = 40) :: name
 type (address_type) :: address
 type (phone_type) :: phone
 character (len = 100) :: remarks
end type person_type

Since phone_type and address_type were defined
before person_type, we could use them as
components of the person_type structure.

Declaring and Using Structures

Now we can define a variable using our new derived
type:

type (person_type) :: joan
type (person_type), dimension(1000) :: black_book

Also, the component names are local to the structure,
so there is no problem if the same program unit also
uses simple variables like number, street, city, etc.

The only thing you can’t put into a derived type is an
allocatable array, but you can use a pointer to
achieve exactly the same thing.

Referencing Structure Components

Write the name of the structure followed by a % and
then the name of the component:

joan % address ! blanks are permitted but not required
joan % address % state
joan % phone % area_code
black_book(42) = joan ! copy all components
black_book(42) % address % number = joan % address % number + 1

Let’s look at an example of how structures could be
used in a program. Suppose we want to print out the
names of all persons who live in a given zip code:

subroutine find_zip (zip)

 integer, intent(in) :: zip
 integer :: entry

 do entry = 1, number_of_entries
 if (black_book(entry) % address % zip_code == zip) then
 print *, black_book(entry) % name
 endif
 enddo

end subroutine find_zip

Structure Constructors

Each derived-type definition creates a constructor
whose name is the same as that of the derived type,
and it can be used to create a structure of the named
type.

joan % phone = phone_type(505, 2750800)

It is not necessary that the function arguments be
constants:

joan = person_type(“Joan Doe”, john % address, &
 phone_type(505, fax_number - 1), &
 “Same address as husband John”)

A “real world” example from the CSU global coupled
model (and a teaser):

 type, public :: qp_type
 integer (kind=int_kind) :: itag
 character (len=30) :: name
 character (len=30) :: units
 character (len=80) :: descr
 integer (kind=int_kind) :: nsamples
 logical (kind=log_kind) :: log
 logical (kind=log_kind) :: amip_sampling
 real (kind=real_kind), pointer :: qp2_data(:,:,:)
 real (kind=real_kind), pointer :: qp3_data(:,:,:,:)
 end type

 type (qp_type), dimension(nqp2) :: hqp2

So you can’t use an allocatable (dynamic) array
within a structure, but you can effectively do it
using a pointer array.

Modules and
Interfaces

Introduction
Passing arguments is not always the most effective
way to share a large number of variables among many
different procedures, and on some systems may
actually reduce efficiency.

Modules provide another way of sharing constants,
variables and type definitions.

They also provide a way of sharing procedures, which is
useful when building a library of data and procedures
that can be accessible to many different programs.

A module is a program unit that is not executed
directly, but contains data specifications and
procedures that may be utilized via the use statement.

Basic Layout

module nameOfModule
 implicit none
!-- declare data and interface statements
 contains
!-- subroutines and functions are declared here
end module nameOfModule

!-- use a module
program mainProgram
 use nameOfModule ! must be first
 implicit none
 .
 .
end program mainProgram

A simple example:
module trig_constants
 implicit none
 real, parameter :: pi = 3.1415926, rtod = 180.0/pi, dtor = pi/180.0
end module trig_constants

program calculate
 use trig_constants
 implicit none
 real :: angle = 30.0
 write(*,*) sin(angle*dtor)
end program calculate

USE statements always precede all other types of
specification, including IMPLICIT NONE.

The module must be compiled before all other
program units which use it.

Why not just use an include statement instead?

Advantages of Modules

Module procedures can be accessed by the main
program as well as any other module and procedures.

We can control accessibility of data and procedures.

use some_module, only : x, y, z

also public and private statements/attributes

We can avoid name clashes.

use some_module, nu => nr_of_unknowns

Combo:

use some_module, only : dbl => double, quad

The interface of module procedures is automatically
explicit. This means that the compiler can check actual
and dummy arguments for consistency. Also, we need
explicit interfaces to use “advanced features” like
assumed-shape arrays, pointer arrays, optional
arguments, user-defined operators, etc.

see badpass.f90, goodpass1.f90, etc.

With derived types and modules we can create
“abstract data types” by indicating what values the
data may assume and what operations may be
performed on the data.

Generic Procedures

Many intrinsic procedures are generic in that they
allow arguments of different types (e.g., abs will take
an integer, real or complex argument). We can write
our own generic procedures in Fortran 90 with the
help of interface statements.

The correct routine is picked for execution based on the
types of the arguments - they must be different for
this to work correctly!

Example: the swap subroutine (genericswap.f90).

