* Each intrinsic data type has a kind parameter
associated with it which is intended to designate a

machine representation.

* A particular implementation might have three “real”
kinds: single, double and quadruple precision.

* The kind is specified with an integer:
* INTEGER (kind=2) or INTEGER(2)

* BUT the standard does not define what the infeger
means!!! So kind parameters 1, 2 and 3 might be
single, double and quadruple precision on one
systew, but on a different system the kind
parameters 4, 8 and 16 may represent the same
thing. (example: mykinds.f90)




* The only requirements are that there must be at least
two real and complex kinds, and at least one kind for
the integer, logical and character intrinsic types.

* The intrinsic functions selected_int_kind and
selected_real_kind may be used to select an
appropriate kind for a variable or a named constant.

* selected _int_kind(P): returns the kind value of the
swmallest integer type that can represent all values
ranging from -10°P to 10°P (exclusive). If there is no
integer kind that can accomodate this range,
selected_int_kind returns -l.




* selected_real_kind(P R): returns the kind value of a
real data type with decimal precision of at least P
digits and exponent range greater than at least R.

* returnvalve:

* -1 = processor does not support a real data type
with a precision >= P

* -2 =processor does not support a real data type
with an exponent range >= K.

* -3 = neither is supported
* example: whatkinds.f90




* KEY: put definitions in a module and use this
throughout your code!!!

CSU GCM exawmple: kinds.F

module kinds
integer, parameter :: int_kind = kind(1), &
log_kind = kind(.true.), &
real_kind = selected_real_kind(6), &
dbl_kind = selected_real_kind(13)
end module kinds

Sample computational : elliptic_solverF

module elliptic_solver
use kinds
use physical_parameters

logical (kind=log_kind),parameter ::|_multigrid = .true.
integer (kind=int_kind) :: bad_apples,iter,iter_max,n1,n2
real (kind=dbl_kind), parameter :: rconverge = 1.0E-20_dbl_kind




* Constants may have their kind parameter appended
where kind matching is required (e.g., in procedure
arquwments):

call some_routine (1.0_dbl_kind, 45_int_kind, x, vy, ...)

* Simple example: passkinds.f90
* And another interesting example: pif90




